
i

The CDEV Generic Server
A CDEV Extension Library for Building Client/Server Systems

Version 1.5 December 9, 1996

Walt Akers, Chip Watson, Jie Chen

TJNAF - Thomas Jefferson National Accelerator Facility

ii Document Revision: 1

TRADEMARKS: UNIX is a registered trademark of AT&T in the USA and other countries.

VxWorks is a register trademark of Wind River Systems.

The X Window System is a trademark of Massachusetts Institute of Technology.

OSF/Motif and Motif are trademarks of Open Software Foundation, Inc.

Ultrix and DEC are registered trademarks of Digital Equipment Corporation.

HPUX is a registered trademark of Hewlett Packard.

SURA/CEBAF: The Southeastern Universities Research Association (SURA) operates the
Continuous Electron Beam Accelerator Facility (CEBAF) for the United States
Department of Energy under contract DE-AC05-84ER40150.

DISCLAIMER: This report was prepared as an account of work sponsored by the United States
government. Neither the United States nor the United States Department of
Energy, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product or process disclosed, or
represents that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by trade name,
mark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States government or
any agency thereof. The view and opinions of the authors expressed herein do
not necessarily state or reflect those of the United States government or any
agency thereof.

DOCUMENT DATE: Table of contents generated: May 30, 2000 8:58 am

Table of Contents

1. Overview of the CDEV Generic Server Engine . 1
Purpose of This Document. 1
Intended Audience . 1
What is the CDEV Generic Server Engine. 1
Why Use the CDEV Generic Server Engine . 1
Features . 1

2. Building the CDEV Generic Server Engine . 3
Steps for Compiling and Testing the CDEV Generic Server Engine 3

3. The Reflector Server - A Simple Client/Server System . 5
Overview . 5
Reflector Server Source Code . 5
ReflectorServer Header Files. 6
The ReflectorServer Class . 6
The main Function . 6
The ReflectorService Source Code . 6
The ReflectorService.h Header File . 7
The newReflectorService Function . 7
The ReflectorService Class . 7
The CDEV DDL File . 7
Testing the Reflector Server. 8

4. Server Class Hierarchy . 9
Server Classes. 9
FifoQueue Class. 9
MultiQueue Class. 9
ClientSession Class . 10
Attributes of the ClientSession Class . 10

localID . 10
clientID. 10
socketID . 10

SocketSession Class . 10
Attributes of the SocketSession Class . 10

socketID . 10
ClientAcceptor Class . 10
SocketReader Class. 10
SocketWriter Class. 10
ClientHandler Class . 10
cdevSessionManager Class. 11
cdevServer Class . 11

5. Client Class Hierarchy . 12
Client Classes . 12
SocketReader Class. 12
SocketWriter Class. 12
ServerHandler Class . 12
ServerHandlerCallback Class . 13
ServerConnectionList Class. 13
cdevServerInterface Class . 13
cdevClientRequestObject Class. 13
cdevClientService Class . 13

6. Properties of the cdevSessionManager Class . 15
Overview . 15
Attributes of the cdevSessionManager Class. 15
iii

Reactor. 15
trigger . 15
rate . 15
localIdx . 15
inbound . 15
clients . 15
sockets . 16

Methods of the cdevSessionManager Class . 16
getNextLocalID. 16
newClientSession. 16
newClientSession. 16
findLocalClient . 16
findClient . 16
findSocket. 16
addClient . 17
addSocket . 17
removeClient . 17
removeSocket. 17
enqueue . 17
enqueue . 18
dequeue . 18
decodePacket. 18
 encodePacket . 18
get_handle . 18
handle_input. 19
handle_close . 19
handle_timeout. 19
set_rate . 19
get_rate . 19
processMessages . 19

7. Properties of the cdevServer Class . 20
Overview. 20
Attributes of the cdevServer Class . 20

Finished . 20
serverName . 20
acceptor . 20
timer . 20
status . 20

Methods of the cdevServer Class. 20
cdevServer . 20
newClientSession. 21
newSocketSession . 21
dequeue . 21
decodePacket. 21
encodePacket. 21
operational . 21

8. Properties of the cdevServerInterface Class . 22
Overview. 22
Attributes of the cdevServer . Interface Class22

Reactor. 22
connections . 22
domain . 22
defaultServer . 22
iv Document Revision: 1

defaultServerHandler . 22
maxFd . 22
fdList . 22

Methods of the cdevServer . Interface Class23
cdevServerInterface. 23
getDefault. 23
getDomain . 23
setDefault. 23
connect . 23
disconnect . 23
enqueue. 23
getFd . 23
flush . 23
pend. 24

9. Properties of the cdevClientService Class . 25
Overview . 25
Attributes of the cdevClientService Class . 25

callback . 25
transactions . 25
contexts . 25
tagCallback . 25

Methods of the cdevClientService Class . 25
cdevClientService . 25
defaultCallback . 25
outputError. 26
flush . 26
pend. 26
poll . 26
pend. 26
getNameServer . 26
getRequestObject . 26
enqueue. 26
cancel . 26
enqueue. 27
fireCallback . 27

10. Properties of the cdevClientRequestObject Class . 28
Overview . 28
Attributes of the cdevClient RequestObject Class . 28

sendStatus. 28
server. 28
DDL_server . 28
syncCallback . 28
handler. 28
contextID . 28
commandCode . 28
messageCode . 28

Methods of the cdevClient . RequestObject Class29
constructor . 29
setContext . 29
send . 29
sendNoBlock . 29
 sendCallback . 29
className . 30
v

defaultCallback. 30
executeServer . HandlerCallback30
getServerHandler . 30
getContextID . 30
getCommandCode . 30
getMessageCode . 30

11. Implementing Monitoring on the cdevServer . 31
Overview. 31
Special Notes . 31
Attributes of the cdevMonitorTable Class . 31

monitors . 31
Methods of the cdevMonitorTable Class . 31

insertMonitor . 31
removeMonitor . 32
remove .ClientMonitors32
findMonitor . 32
fireMonitor . 32
fireCallback. 32

Attributes of the cdevMonitorNodeClass . 33
parent . 33
node . 33
hashString . 33

Methods of the cdevMonitorNode Class. 33
fireMonitor . 33
isMonitored. 33

12. VirtualService: A Complex Client/Server Implementation 34
Overview. 34
Virtual Server Structure . 34
Virtual Service Structure. 34

VirtualAttrib.h . 35
VirtualAttrib.cc . 37
VirtualServer.h . 48
VirtualServer.cc . 49
VirtualService.h . 53
VirtualService.cc . 54
Virtual.ddl . 56
vi Document Revision: 1

List of Figures

Figure 1. ReflectorServer.cc - Source Code for the Reflector Server 5
Figure 2. ReflectorService.h - Header File for the Reflector Service....................... 6
Figure 3. ReflectorService.cc - Source Code for the Reflector Service................... 7
Figure 4. Reflector.ddl - A Simple CDEV DDL File.. 8
Figure 5. Object Hierarchy of Server Classes ... 9
Figure 6. Object Hierarchy of Client Classes... 12
Figure 7. General Structure of the cdevMonitorTable ... 31
Figure 8. Components of the Virtual Server .. 34
Figure 9. Components of the Virtual Service... 34
vii

viii Document Revision: 1

1. Overview of the CDEV Generic Server Engine
1. Overview of the CDEV Generic Server Engine

Purpose of This
Document

This document is designed to provide an overview and tutorial of how to implement
client/server applications by using the CDEV Generic Server Engine. Adherence to
the structure and syntax that is specified in this document will improve the likelihood
that the CDEV service/server developer’s application will be compatible with other
similar applications using CDEV.

The class library was designed to be as efficient as possible and still maintain the
flexibility to allow CDEV client/server developers to use it with minimal modification. In
addition to describing the conceptual behavior of the server, this document will also
discuss the C++ classes and how inheritance and overloading may be used to build
the best server for your application.

Intended Audience This document is intended for anyone who will be developing a CDEV server or will be
developing CDEV applications that will communicate with one another over a network.
This document will also be useful for software developers who wish to develop a non-
CDEV application that can communicate with an existing server that uses this class
library.

What is the CDEV
Generic Server
Engine

The CDEV Generic Server Engine is a collection of C++ classes that may be used to
quickly develop a client/server application. The communications component of the
library is based on the Adaptive Communications Environment (ACE), a freeware
product developed by Douglas Schmidt that is provided with the CDEV distribution.

CDEV servers use a global CDEV Name Server (provided with the source code
distribution) to register themselves. The client services can then use this Name Server
to locate servers by type, name or host. The Name Server insures that each server
name is unique within its type or domain. Servers that have not reregistered within a
specific time period (usually 60 seconds) are automatically removed from the Name
Server.

Clients and servers that are developed using this library will use the CDEV Linear
Internet Protocol to communicate. The documentation for this protocol is provided with
the CDEV distribution and its use ensures that the developer’s server will be
accessible by all CDEV compliant applications.

Why Use the CDEV
Generic Server
Engine

The CDEV Generic Server Engine provides a robust and reliable mechanism for
quickly developing client/server applications. Because all of the network
communications intricacies are isolated by the C++ classes, the developer’s server
can easily be modified and upgraded without significant modification to the network
internals. Additionally, by using CDEV, the client does not need to be ‘network-aware’,
the client C++ class library does all of the communications work.

The CDEV Generic Server Engine also provides a myriad of features that would
require a significant investment in time to develop for each new server. These features
are described in detail below.

Features • The developer is only required to create a subclass of the cdevServer C++ class
and overload a single method in order to generate the communications
component of his server.
1

1. Overview of the CDEV Generic Server Engine
• The complete client communications portion of the application is accomplished by
inheriting a CDEV service class from the cdevClientService C++ class and writing
a boiler plate service loader.

• The engine uses the CDEV Linear Internet Protocol (CLIP) to communicate. This
protocol uses cdevData objects (a self-describing data structure) to transfer data
allowing unique, application specific data structures to be transferred without
modifying the protocol.

• The client and server side of the application use a global CDEV Name Server to
register and locate various servers by their type, name or host.

• The socket utility classes use embedded buffering to optimize asynchronous
communications and increase communications speed.

• The communications interface is completely abstracted from the client application.
Because the application has only a CDEV view of the world, the underlying
communications engine can be modified or upgraded without breaking the
program.

• Clients automatically reconnect to server following a disconnect or
communications error.

• Communications integrity is ensured by using TCP/IP and the Adaptive
Communications Environment (ACE) C++ library.

• The server supports multiple concurrent client connections. Because the inbound
data is read incrementally and buffered, a slow client will not cause the server to
block while waiting for a transmission to be completed.

• The server is completely event driven. It is activated whenever a client submits a
packet or packets, otherwise, it sleeps until it has inbound data to process.

• An individual tag map is maintained for each connection. When data is received
the server will map the contents of the clients cdevData objects to the server’s
representation prior to processing. The cdevData objects are remapped to the
client’s representation prior to returning results.

• The server has built-in mechanisms for storing, executing and removing client
specified monitors on server data objects. This monitoring capability easily allows
application developers to create event-driven client programs that respond to
changes in the server.

• A timer-based CDEV ‘polling’ class is provided that allows the server to attach to
other CDEV servers or services to obtain information.
2 Document Revision: 1

2. Building the CDEV Generic Server Engine
2. Building the CDEV Generic Server Engine

Steps for
Compiling and
Testing the CDEV
Generic Server
Engine

1. Install and compile the CDEV source code distribution . See the CDEV
distribution for specific instructions for compiling these libraries.

2. Compile the Adaptive Communications Environment (ACE) Library. ACE is
located at the same level as the ‘src’ directory in the CDEV distribution tree. The
README file located in that directory will provide specific instructions on building
this library on your system. The ACE libraries should be automatically copied to
the CDEV library directory.

3. Setup the Makefile for your platform. In the directory include/makeinclude there
are a collection of makefiles that are followed by the name of the platform for
which they were developed. Link the makefile associated with your platform to the
file Makefile.OS by typing the following command: “ln -s Makefile.XXXX
Makefile.OS”.

If a makefile for your platform does not already exist, you may have to create one
in that directory.

4. Compile the cdevGenericServer Library . The source code tree for this
distribution is located in the directory $CDEV/extensions/cdevGenericServer.

The makefile for this library requires the same environment variables that are
used by the main CDEV makefile.

CDEV This is the root directory of the CDEV distribution.

CDEVVERSION This is the version number of the CDEV class library.

CDEVSHOBJ This is the directory for the CDEV shared objects.

CDEVLIB This is the directory where the CDEV libraries reside.

CDEVINCLUDE This is the directory where the CDEV include files reside.

To compile the libraries, go to the cdevGenericServer directory and type make. All
libraries and the associated test and example applications should be built.

5. Run the test applications to ensure that the code is working correctly. These
applications are located in the test sub-directory of the cdevGenericServer tree.
The test applications require that a special DDL file is specified and that the CDEV
Name Server is operating. Perform the following steps to test the library.

5a. Start the Name Server. The NameServer application is located in the bin
directory of the cdevGenericServer distribution tree. The NameServer should
produce no output and can be executed in the background by typing:
“NameServer &”.

5b. Specify the host name of the Name Server . Because all applications will
need to access the Name Server, the host where it is executing should be
specified in the CDEV_NAME_SERVER environment variable. This variable
must be specified in the environment of each shell that will need to access the
Name Server. If the Name Server is running on host foo.cebaf.gov, the Name
Server environment variable can be set by typing: “setenv
CDEV_NAME_SERVER foo.cebaf.gov”.
3

2. Building the CDEV Generic Server Engine
5c. Specify the CDEV Device Definition Language file for the test programs.
The DDL file for the test programs is named TestService.ddl and is located in
the test sub-directory of the cdevGenericServer distribution tree. In order for
this DDL file to be used as the default, it should be specified in the CDEVDDL
environment variable. This can be accomplished by moving to the test
directory and typing the following command: “setenv CDEVDDL $PWD/
TestService.ddl”.

5d. Specify the CDEVSHOBJ directory. The CDEVSHOBJ directory is the
directory that contains the versioned subdirectories for the service shared
objects. By default the makefile will place the file TestService.so in the
directory $CDEV/lib/PLATFORM-OSVERSION.XX/1.5/TestService.so, where
PLATFORM is the name of your platform and OSVERSION is the major
operating system. The following example shows the location of the
TestService.so on a Solaris 5.5 system and the correct setting for the
CDEVSHOBJ variable.

Location : $CDEV/lib/solaris-5.XX/1.5/TestService.so
CDEVSHOBJ : $CDEV/lib/solaris-5.XX

The CDEVSHOBJ variable may point to the directory that actually contains
the service shared objects, however, CDEV will always attempt to locate the
files in the version subdirectory first in order to support multiple CDEV
versions.

5e. Start the Test Server. The environment is now correct to start the TestServer.
From the bin sub-directory type the command: “TestServer”. The TestServer
should print a message indicating that it is ready to process user requests.

5f. Specify the Client Tag Map. In order to test all capabilities of the server, the
client should use a tag map that is different from the one that is in use on the
server side of the connection. A special tag map has been provided that can
be used to test this feature. The tag map is located in the test sub-directory
and can be specified by moving to the test subdirectory and typing: “setenv
CDEVTAGMAP $PWD/cdevTagMap.txt”.

5g. Start the Test Client. In a new window, set the CDEV_NAME_SERVER and
the CDEVDDL environment variables as previously described. The test client
may then be started by typing the following command “TestProgram”.

5h. Examine Test Server and Test Client output. The server and the client
should periodically print a line indicating that the packets that they are
exchanging are correctly matched. If a mismatch occurs, both sides of the
connection will print out a verbose description of what differences were
detected.

5i. Terminate the Test Server and the Test Client. The TestServer and
TestProgram applications are terminated using CTRL-C. When the
applications are terminated, they should display a disconnecting message
and exit gracefully.
4 Document Revision: 1

3. The Reflector Server - A Simple Client/Server System
3. The Reflector Server - A Simple Client/Server System

Overview The Reflector client/server system is a simple CDEV service that returns the cdevData
object unmodified to the caller. The Reflector server can be used as a skeleton for any
other server that the developer may wish to create. The source code that is provided
in the following sections is available in text form in the examples sub-directory of the
cdevGenericServer directory tree. A more complex example is provided in section 11
of this document.

Reflector Server
Source Code

The server for the Reflector system is instituted as a single C++ file. The source code
for this application is listed below.

Figure 1: ReflectorServer.cc - Source Code for the Reflector Server
#include <cdevServer.h>

// **
// * class ReflectorServer:
// * This is the server class for the reflector. It simply
// * receives messages from a client and immediately returns them.
// *
// * The constructor passes the domain, server, port and rate to the
// * underlying cdevServer class to be processed. The cdevServer
// * constructor will add this server to the Name Server and will
// * begin processing messages when the cdevServer::runServer()
// * method is executed.
// *
// * The processMessages method is the servers interface to the
// * world... Each time a complete message is received or the time
// * specified in rate expires, that method will be called.
// **
class ReflectorServer : public cdevServer
{
public:

ReflectorServer (char *domain, char *server,
unsigned int port, double rate)

: cdevServer(domain, server, port, rate)
{
}

virtual void processMessages (void)
{
cdevMessage * message;
while(dequeue(message)==0)

{
enqueue(message);
delete message;
}

}
};

void main()
{
ReflectorServer server(“REFLECTOR”, “TestServerX”, 9120, 60);
cdevServer::runServer();
}

5

3. The Reflector Server - A Simple Client/Server System
ReflectorServer
Header Files

In the source code for the Reflector server, the only header file that must be included
is the one for the cdevServer class. This header contains all of the definition
information that is required for the Adaptive Communications Environment (ACE) and
the CDEV Linear Internet Protocol.

The
ReflectorServer
Class

The ReflectorServer class inherits directly from the cdevServer class. Because
cdevServer defines all of the functionality necessary to establish a listening socket
and accept connections, the developers start-up is limited to initializing the
cdevServer class object with the domain name, server name, listening socket number
and the time-out rate.

The developer is required to create a processMessages method which will perform
whatever message processing that is required of the server. In this case, the
processMessages method will merely remove an entry from the queue and then re-
enqueue it for return to the client. Note that the enqueue method does not delete the
cdevMessage object, so it is the responsibility of the developer to delete the
cdevMessage object when it is no longer needed.

The main Function The main function is responsible for starting the server when the application is started.
In order to perform this task, main must first create a new ReflectorServer object. The
ReflectorServer in this example has the Name Server domain “REFLECTOR” and the
server name “TestServerX”. It will be listening for connections on socket 9120 and will
automatically process messages at least once every 60 seconds.

When the ReflectorServer was created it automatically registered itself with the ACE
Reactor that is embedded in the cdevServer class. In order to begin accepting
connections and processing messages the main function must call the static
runServer method of the cdevServer class. This method will continue servicing
requests until the static Finished flag of the cdevServer class is set to non-zero.

The
ReflectorService
Source Code

The ReflectorService is the CDEV interface to the ReflectorServer that is described
above. The source code for the ReflectorServer is implemented as a single source file
and its associated header file. The source code for the ReflectorService is as follows.

Figure 2: ReflectorService.h - Header File for the Reflector Service
#include <cdevClientService.h>

// **
// * Function called to create initial instance of ReflectorService
// **
extern “C” cdevService *newReflectorService (char *, cdevSystem *);

// **
// * class ReflectorService :
// * This class simply inherits from the cdevClientService and must
// * define only a constructor and destructor.
// **
class ReflectorService : public cdevClientService
{
public:

ReflectorService (char * name, cdevSystem & system =
cdevSystem::defaultSystem());

protected:
virtual ~ReflectorService (void) {};

};
6 Document Revision: 1

3. The Reflector Server - A Simple Client/Server System
Figure 3: ReflectorService.cc - Source Code for the Reflector Service

The
ReflectorService.h
Header File

While the server is not required to have a specific header file, a CDEV service must
have a header file that may be used to create a loader for the archive version of the
library. This file is always named xxxxxService.h, where xxxxx is the name of the
service as it will be specified in the CDEV DDL file. This file must contain the complete
class definition for the service class.

The newReflector-
Service Function

Each service in CDEV must have a function that the cdevSystem object can call to
create the initial instance of the object. In the case of the ReflectorService, this
method will create a new instance of the ReflectorService using the provided name
and cdevSystem object. This new object will then be returned as a pointer to a
cdevService object.

The
ReflectorService
Class

Because of the simplicity of the ReflectorService, all of the functionality of this class is
inherited from the cdevClientService class. The ReflectorService class is only
required to initialize its parent classes to be fully operational.

The CDEV DDL
File

After compiling this source code into a server application and a CDEV shared library
using the makefile that is provided in the examples sub-directory, the developer is
ready to generate a CDEV DDL file that will map certain device/message
combinations to the Reflector service. The following simple CDEV DDL file can be
used to map device “device1” and message “get attrib1” to the Reflector Service. Note
that by entering the server tag in the service data section, the default server name that
the message will be sent to may be specified. In this case all messages associated
with the “attrib1” attribute will be sent to “TestServerX”.

#include <ReflectorService.h>

// **
// * newReflectorService:
// * This function will be called by the cdevSystem object to create
// * an initial instance of the ReflectorService.
// **
extern “C” cdevService * newReflectorService

(char * name, cdevSystem * system)
{
return new ReflectorService(name, *system);
}

// **
// * ReflectorService::ReflectorService :
// * This is the constructor for the ReflectorService. It
// * initializes the underlying cdevClientService by specifying
// * that it is in the domain of REFLECTOR.
// **
ReflectorService::ReflectorService

(char * name, cdevSystem & system)
: cdevClientService(“REFLECTOR”, name, system)
{
system.reportError(CDEV_SEVERITY_INFO, “ReflectorService”, NULL,

 “Constructing a new ReflectorService”);
}

7

3. The Reflector Server - A Simple Client/Server System
Figure 4: Reflector.ddl - A Simple CDEV DDL File

Testing the
Reflector Server

After compiling the server and the service components of the Reflector system, the
developer can test the functionality of the client/server application by performing the
following steps.

1. Start the Name Server.

2. Set the CDEV_NAME_SERVER environment variable in the shell where you will
execute the server and the client to indicate the host where you started the Name
Server. For instance: setenv CDEV_NAME_SERVER cebaf1.cebaf.gov.

3. Set the CDEVSHOBJ environment variable in the shell where you will start the
client application to indicate the directory where the ReflectorService.so file is
stored.

4. Set the CDEVDDL environment variable in the shell where you will start the client
application to indicate the absolute path to the CDEV DDL file where the Reflector
definitions have been created.

5. Start the server.

6. Start the cdevUtil application that is provided with the CDEV distribution and send
messages to the server by typing: device1 get attrib1. You may want to enter
additional output code in the processMessages method of the server to report
each time a message is received.

service Reflector
{
tags {server}
}

class Reflectors
{
verbs {get}

attributes
{
attrib1 Reflector {server=TestServerX};
}

}

Reflectors :
device1,

;

8 Document Revision: 1

4. Server Class Hierarchy
4. Server Class Hierarchy

Server Classes The server side of the CDEV Generic Server Engine library is composed of a series of
classes that are used in conjunction with the ACE Reactor class to provide event
driven socket management. The following diagram shows an object diagram of the
classes that are used on the server side of the connection.

Figure 1: Object Hierarchy of Server Classes

FifoQueue Class This class is a simple queue that is used to enqueue inbound messages that are
received from a socket. Because all messages will be processed by the same method,
there is only one FifoQueue object that is used by all client sockets. This object
resides in the cdevSessionManager class.

MultiQueue Class A MultiQueue object is a special type of FifoQueue that allows the caller to create an
object that is to be placed into the queue and then place it into several queues at once.
If the message is removed from any queue, it will automatically be removed from all
other queues where it exists. This mechanism is used to provide the capability of
removing all of a specific client’s outbound packets without stepping through all of the
packets in the associated socket’s queue.

class ClientAcceptor

class ACE_EventHandler

class SocketReader

class SocketWriter

class ClientHandler

class cdevSessionManager

class ACE_Reactor

class SocketSession

class MultiQueue

class ClientSession

class MultiQueue

1

class FifoQueue

1

class cdevServer

1

1

9

4. Server Class Hierarchy
ClientSession
Class

The ClientSession class inherits its queue functionality from the MultiQueue class. It is
used to hold all outbound packets that are associated with a specific client identifier.
The ClientSession object also holds supplemental data that the cdevSessionManager
will need to manage the client. This class be subclassed by the developer in order to
associate more data with the client identifier. The following information is stored in the
ClientSession object:

Attributes of the
ClientSession
Class

localID short localID;

This is the client identifier that will be used on the server to
uniquely identify the client.

clientID int clientID;

This is the client identifier that was provided by the client
combined with the socket identifier.

socketID int socketID;

This is the socket identifier (file descriptor) to which the client is
connected.

SocketSession
Class

The SocketSession class inherits its functionality from the MultiQueue class. It is used
to hold all packets that are destined for a specific socket. The SocketSession object is
also used to store supplemental data that the cdevSessionManager will need to
maintain the connection. This class be subclassed by the developer in order to
associate more data with the socket identifier. The following information is stored in
the SocketSession object:

Attributes of the
SocketSession
Class

socketID int socketID;

This is the socket identifier (file descriptor) to which the remote
client is attached.

ClientAcceptor
Class

The ClientAcceptor class is used by the ACE Reactor to listen to the server socket and
accept each inbound client connection. When a connection is accepted, this class will
create a ClientHandler object that will manage the connection throughout its lifetime.

SocketReader
Class

The SocketReader class has the embedded mechanisms to read buffered packets
from a socket. The ClientHandler inherits the functionality of this class to read data
that is received on its associated socket.

SocketWriter
Class

The SocketWriter class has the embedded mechanisms to write buffered packets to a
socket. The class maintains a 56 kilobyte buffer that it uses to enqueue as many
outbound messages as possible before executing a network write. The ClientHandler
inherits the functionality of this class to write data to its associated socket.

ClientHandler
Class

A ClientHandler object is created each time a new connection is accepted by the
server. This class is used by the ACE Reactor to manage the input and output events
on the specific socket. When data is received from the socket by the handle_input
method, the ClientHandler object will enqueue the inbound packet in the FifoQueue
provided by the cdevSessionManager class. When the cdevSessionManager class
10 Document Revision: 1

4. Server Class Hierarchy
enqueues outbound packets, the handle_output method of the ClientHandler class will
write them to the socket using as many write operations as required to transmit all
data.

When the ClientHandler object is destroyed it will notify the cdevSessionManager
object which will remove its associated queues and will remove it from the ACE
Reactor.

cdevSessionMan-
ager Class

The cdevSessionManager class maintains all of the queues, ClientSession and
SocketSession objects that are used to operate a server. This class also defines the
enqueue and dequeue methods that are used by the cdevServer to obtain inbound
packets and to submit outbound packets.

cdevServer Class The cdevServer class inherits the queue management functionality that is provided by
the cdevSessionManager class and then implements the ClientAcceptor and
ClientHandler classes to accept and process connections. The cdevServer class also
introduces the concept of timed execution of the server function and automatic
registration of the server with the CDEV Name Server.

In order to construct a new CDEV Server application, the developer only needs to
inherit his server class from the cdevServer class and then define the
processMessages method. This method will be called whenever the server timer
expires or when data is ready to be processed in the inbound queue. Once called the
processMessages method should use the dequeue method to remove the inbound
cdevMessage object, process the message, and then use the enqueue method to
return the processed cdevMessage object to the client.

The encodePacket and decodePacket methods of this class are responsible for
coordinating the tables of context objects, performing tag mapping and converting
between the local client identifier and the foreign client identifier.
11

5. Client Class Hierarchy
5. Client Class Hierarchy

Client Classes The client side of the CDEV Generic Server Engine consists of a collection of classes
that are used in conjunction with the CDEV service architecture and the ACE Reactor
to provide pollable event driven behavior. The following diagram shows the object
structure of the classes used by the client.

Figure 2: Object Hierarchy of Client Classes

SocketReader
Class

The SocketReader class has the embedded mechanisms to read buffered packets
from a socket. The ServerHandler inherits the functionality of this class to read data
that is received on its associated socket.

SocketWriter
Class

The SocketWriter class has the embedded mechanisms to write buffered packets to a
socket. The class maintains a 56 kilobyte buffer that it uses to enqueue as many
outbound messages as possible before executing a network write. The ServerHandler
inherits the functionality of this class to write data to its associated socket.

ServerHandler
Class

A ServerHandler object is created for each server that the cdevServerInterface wishes
to communicate with. This object has an embedded FifoQueue object that is used to
store the outbound packets until the ServerHandler’s data is flushed. If the
ServerHandler receives a sufficient number of packets or volume of data it will
automatically flush its buffer to the socket. The ServerHandler inherits much of its
communications functionality from the SocketReader and SocketWriter classes which
provide buffered communications methods.

class ACE_EventHandler

class SocketReader

class SocketWriter

class ServerHandler

class cdevServerInterface

class ACE_Reactor

class ServerConnectionList

class cdevClientService

1

1

class cdevService class cdevClientRequestObject

class cdevRequestObject

1

class ServerHandlerCallback
12 Document Revision: 1

5. Client Class Hierarchy
The cdevClientRequestObject may obtain a pointer to the ServerHandler that is
associated with the server that it is communicating with. By referencing this pointer
when enqueueing messages to the server through the cdevService, the request object
can increase its performance significantly because it does not have to locate the
associated ServerHandler on each transmission.

A cdevClientRequestObject that is utilizing a ServerHandler will register itself in a list
of ServerHandlerCallback objects that are maintained in the ServerHandler object.
When the ServerHandler is destroyed it will notify each ServerHandlerCallback object
in the list to allow them to clear their pointers to it, avoiding the inadvertent use of an
invalid object.

ServerHandler-
Callback Class

The ServerHandlerCallback class is a virtual base class that any class that uses a
ServerHandler object may use to detect when the object is destroyed. When an object
that is inherited from this class is registered with the ServerHandler, it will be called
prior to deleting the ServerHandler object. The inherited object should then set the
associated ServerHandler pointer to NULL to prevent inadvertent access to a deleted
object. The cdevClientRequestObject inherits from this class in order to support this
functionality.

ServerConnection-
List Class

The ServerConnectionList is a table of all ServerHandler objects that are currently
connected to servers. The cdevServerInterface uses this table to locate a
ServerHandler by the name of its associated server. This table prevents multiple
connections from inadvertently being established to the same server.

cdevServerInter-
face Class

This class has a ServerConnectionList that references all ServerHandlers that are
connected to servers for the specific service. This object provides the mechanisms
that are used to enqueue, dequeue, flush, poll and pend on the outbound connections.

The cdevServerInterface class contains an ACE Reactor that is used to respond to
input/output events that occur on the sockets within the ServerHandlers. Because this
Reactor is static within the cdevServerInterface class, it will handle events for all of the
server connections in all of the services that are inherited from it when it is called.

cdevClientRe-
questObject Class

This class inherits the majority of its functionality from, the cdevRequestObject class
and is used to associate a device with a specific message. The identity of the server
that supports the specific device/message combination may be specified in several
ways: through the server tag in the context, through the CDEV DDL file, or by the
server specified by a prior call to set default. If a specific server has been named, the
cdevClientRequestObject will obtain a pointer to the associated ServerHandler object
and will use that as a reference when submitting enqueue messages to the
cdevClientService object. If no server has been specified, then the
cdevClientRequestObject will set the ServerHandler pointer to NULL and will rely on
the cdevClientService to use the default server. If no default server has been specified
then the transmission will fail.

cdevClientService
Class

This class inherits its functionality from the cdevServerInterface class. While the
cdevServerInterface class deals exclusively with binary streams and their associated
lengths, this class is called to enqueue information in the form of device, message,
data and context. The class will encode this information into the appropriate binary
format and submit it to the cdevServerInterface for enqueueing. When data is received
13

5. Client Class Hierarchy
from the server, the cdevServerInterface will provide it to the cdevClientService in the
form of a binary stream, and the service will decompose it into its CDEV components
and dispatch the caller specified callback.

Messages are enqueued in the service in the form of cdevTranObjs. The
cdevClientService manages these messages by maintaining a list of numbered
transactions. The transaction number associated with a message is embedded in the
outbound binary packet. When a server responds the same transaction number is
embedded in the response packet. This transaction number is then used to locate and
dispatch the associated callback. Once the callback has been executed, the
transaction object is removed from the list and deleted.

In the event that a message indicates a monitoring operation, the transaction object is
marked as permanent until a monitorOff operation is executed.
14 Document Revision: 1

6. Properties of the cdevSessionManager Class
6. Properties of the cdevSessionManager Class

Overview As described earlier the cdevSessionManager class is responsible for managing the
queues that are used to read and write data to a collection of sockets that are
communicating with the server. The public interface to the cdevSessionManager class
is described below.

Attributes of the
cdevSessionMan-
ager Class

Reactor static ACE_Reactor Reactor;

This is the ACE Reactor object that is used to respond to input/
output events on the individual sockets and to respond to time
triggered events that are specified by the developer.

trigger FD_Trigger trigger;

This class contains an embedded pipe that is used to trigger
events in the object’s ACE_Event_Handler. Each time a new
packet is enqueued in the cdevSessionManager, a byte is
written to the pipe within the trigger object, this causes the
Reactor to call the processMessages method of the
cdevSessionManager object to handle its input.

rate ACE_Time_Value rate;

Because the cdevSessionManager’s processMessages
method may be called on a periodic basis rather than just when
a new message has arrived, the rate variable contains the
period in seconds between each subsequent execution.

localIdx static IntHash localIdx;

This is a table of ClientSession objects that are hashed based
on the local client index. The local client index is short integer
that is unique within the server and is used to identify a specific
client that is communicating through a socket. The
ClientSession object is the queue that is used to store
outbound packets that are destined for a specific client.
Additional client specific information is also stored in the
ClientSession object.

inbound FifoQueue inbound;

This is the queue into which all inbound messages that are
destined for a specific server are placed. A message is
enqueued as a binary stream and its associated length.

clients IntHash clients;

This is the table of ClientSession objects that are indexed by
the client specified client identifier. While the localIdx table is
global in scope, this table is specific to this instance of the
cdevSessionManager class. The ClientSession object that is
referenced by a specific client identifier is used to enqueue
messages that are destined for that client ID.
15

6. Properties of the cdevSessionManager Class
sockets IntHash sockets;

This is the table of SocketSession objects that are currently in
use by this instance of the cdevSessionManager class. The
SocketSession that is referenced by the socket identifier is
used to enqueue messages that are destined for that client.
The ClientHandler object dequeues messages from the queue
and writes them to the socket using multiple writes if necessary.

Methods of the
cdevSessionMan-
ager Class

getNextLocalID static short getNextLocalID (void);

Because local indexes are short integers that monotonically
increase, this method is used to obtain the next local index from
the list.

newClientSession ClientSession * newClientSession (int SocketID,
int ClientID,
int LocalD);

This method is used by the cdevSessionManager whenever it
needs to create a new ClientSession object. By overriding this
method the developer may return subclassed ClientSession
objects that contain additional, server-specific information that
is associated with the client identifier.

newClientSession SocketSession * newSocketSession (int SocketID);

This method is used by the cdevSessionManager whenever it
needs to create a new SocketSession object. By overriding this
method the developer may return subclassed SocketSession
objects that contain additional, server-specific information that
is associated with the socket.

findLocalClient virtual ClientSession * findLocalClient (short localID);

This method is used to obtain a pointer to the ClientSession
object that is associated with a local client identifier. Because
the cdevServer object deals exclusively with the local client
identifier, this method allows it to obtain the ClientSession
without converting between the local and foreign client ID.

findClient virtual ClientSession * findClient (int clientID);

This method allows the caller to obtain a pointer to the
ClientSession associated with a specific client identifier. This
method uses the remotely specified client ID to locate the
ClientSession object.

findSocket virtual SocketSession * findSocket (int socketID);

This method allows the caller to locate the SocketSession
associated with a specific socket identifier. The socket identifier
is the same as the file descriptor for a specific socket. The
SocketSession object is the queue that is used by the
ServerHandler object to dequeue messages that are destined
for the client.
16 Document Revision: 1

6. Properties of the cdevSessionManager Class
addClient virtual ClientSession * addClient (int socketID, int clientID);

This method is used to add a new ClientSession object to the
clients list and obtain a pointer to the new object. If a
ClientSession object already exists for the socketID/clientID
combination, then a pointer to the existing ClientSession object
will be returned. If a new ClientSession object is created, then
this method will cause a “register” message to be generated
and enqueued in the inbound queue for the cdevServer object.

addSocket virtual SocketSession * addSocket (int socketID);

This method is used to add a new SocketSession object to the
sockets list and obtain a pointer to the new object. If a
SocketSession object already exists for the specific socketID,
then the existing SocketSession object will be returned.

removeClient virtual void removeClient (int clientID, int unregisterFlag=1);

This method removes the ClientSession object associated with
a specific client identifier. If the unregister flag is non-zero, then
this method will compose and send an “unregister” message to
the inbound queue to alert the cdevServer object that the client
(local client identifier) is being removed. The server should then
remove any monitors that are associated with the local client
identifier.

This method will remove and delete any outbound messages
that are destined for the specified client identifier from the
outbound queues.

removeSocket virtual void removeSocket (int socketID);

This method removes the SocketSession object associated
with the specified socket identifier from the sockets list. When a
socket is removed the ClientHandler associated with the socket
identifier will be disconnected and deleted and then all
ClientSession objects that are associated with the socket will
also be deleted. This message will delete all outbound
messages that are in the SocketSession queue or in any of its
associated ClientSession queues.

enqueue virtual int enqueue (int socketID, char * binary, unsigned len);

This method is used by the ClientHandler object to enqueue
messages that are destined for the processMessages method.
The method will create a SocketSession for the ClientHandler if
one does not already exist and will place the message into the
inbound queue.

If the message is from a new client identifier, then a new
ClientSession object is created.
17

6. Properties of the cdevSessionManager Class
enqueue virtual int enqueue (cdevPacket * packet);

This method is used to enqueue a packet that is to be returned
to a client. The cdevPacket structure as described in the CLIP
literature contains a client identifier that is used to determine to
which socket the packet should be enqueued.

The enqueue method will call the encodePacket method in
order to convert the packet into a cdevPacketBinary object to
be enqueued. The developer may overload that method in
order to perform any post-processing that may be necessary
before converting the packet to binary format.

Note, this cdevPacket object remains the property of the caller
and must be deleted when it is no longer needed.

dequeue virtual int dequeue (cdevPacket * &packet);

This method is used to dequeue messages that have been
placed in the inbound queue. The processMessages method
will then process the message and return the result using the
enqueue method. Note that the inbound message contains a
client identifier and other components that must be returned to
the client unmodified.

The dequeue method will call the decodePacket in order to
convert the binary cdevPacketBinary object into a cdevPacket
object. The developer may override that method in order to
perform any pre-processing that may be necessary before
returning the packet.

Note, this cdevPacket object becomes the property of the caller
and must be deleted when it is no longer needed.

decodePacket virtual cdevPacket * dequeue (cdevPacketBinary * binary);

This method converts a cdevPacketBinary object (as stored in
the inbound queue) into a cdevPacket object. The developer
may override this method in order to perform any special pre-
processing that may be necessary prior to returning the
cdevPacket object via the dequeue method.

encodePacket virtual cdevPacketBinary * enqueue (cdevPacket * packet);

This method converts a cdevPacket object into a
cdevPacketBinary object (for submission to the client/socket
queue). The developer may override this method in order to
perform any special post-processing that may be necessary.

get_handle virtual int get_handle (void) const;

This method returns the file descriptor that is used by the
FD_Trigger object. This method is called by the ACE Reactor in
order to obtain a file descriptor for polling.
18 Document Revision: 1

6. Properties of the cdevSessionManager Class
handle_input virtual int handle_input (ACE_HANDLE);

This method is called by the ACE Reactor whenever the file
descriptor in the FD_Trigger object has a read event ready. This
method will, inturn, call the processMessages method to
dequeue the message from the inbound queue and process it.

handle_close virtual int handle_close (int, ACE_Reactor_Mask);

This method is called by the ACE Reactor to close the
connections associated with this object.

handle_timeout virtual int handle_timeout (const ACE_Time_Value&,
const void *);

This method is called by the ACE Reactor when the period
specified by the Rate parameter has expired. This method will,
inturn, call the processMessages method to handle events.

set_rate virtual void set_rate (double d);

This method is used to alter the rate at which the
cdevSessionManager is periodically triggered.

get_rate virtual ACE_Time_Value& get_rate (void);

This method will return the rate at which the
cdevSessionManager object is periodically triggered.

processMessages virtual void processMessages (void);

This is a user defined method that dequeues messages,
processes them and then enqueues the result.
19

7. Properties of the cdevServer Class
7. Properties of the cdevServer Class

Overview The cdevServer class is the developer’s primary interface to the server side of the
CDEV Generic Server Engine. In most cases the developer will only be required to
overload the processMessages method with his own method that dequeues a
message, processes it, and then enqueues the result. The cdevServer class has the
following properties.

Attributes of the
cdevServer Class

Finished static sig_atomic_t Finished;

This flag is used to indicate that the server should shutdown all
connections and exit. This is a public flag that may be set by
signal handlers or by the developer.

serverName char * serverName;

This is the name of the server that was specified when the
cdevServer object was created. This name will be used to
identify the server when reporting errors or events.

acceptor class ClientAcceptor * acceptor;

This is the ClientAcceptor class that will be used to listen for
incoming connections on the specified listening socket.

timer cdevNameServerTimer * timer;

This is a timer object that will be registered with the ACE
Reactor and will reregister the service with the Name Server
periodically. If a server does not update its registration with the
Name Server at least once per minute, the Name Server will
remove its name from its list of available servers.

status int status;

The status variable is set to 0 if the ClientAcceptor was
successfully opened to listen for incoming connections, or -1 if
an error occurred while posting the listening socket.

Methods of the
cdevServer Class

cdevServer cdevServer (char * Domain, char * Server,
unsigned short Port, double Rate);

This method is the constructor for the cdevServer class. It will
register the server with the CDEV Name Server using the
specified Domain and Server names. It will then post a listening
socket using a ClientAcceptor object on the specified Port. The
ACE Reactor will use the rate parameter to establish the
frequency in seconds in which the processMessages method
should be called.
20 Document Revision: 1

7. Properties of the cdevServer Class
newClientSession ClientSession * newClientSession (int SocketID,
int ClientID,
int LocalD);

This method overrides the cdevSessionManager’s
newClientSession method and returns a CLIPClientSession
object. The CLIPClientSession allows the cdevServer object to
associate the most recent CDEV context received with an
individual client identifier.

newSocketSession SocketSession * newSocketSession (int SocketID);

This method overrides the cdevSessionManager’s
newSocketSession method and returns a CLIPSocketSession
object. The CLIPSocketSession object allows the cdevServer
object to associate a cdevTagMap object and a
cdevContextMap object with each socket identifier.

dequeue int dequeue (cdevMessage * &message);

Because the cdevServer deals only with the cdevMessage type
cdevPackets, this method will dispose of any other packet type
that is received and will return the next available cdevMessage
object from the inbound queue.

decodePacket cdevPacket * decodePacket (cdevPacketBinary * input);
cdevPacket * decodePacket(cdevMessage * message);

These methods allow the cdevServer class to perform special
processing whenever a cdevMessage object is dequeued.

encodePacket cdevPacketBinary * encodePacket (cdevPacket * input);
cdevPacketBinary * encodePacket(cdevMessage * message);

These methods allow the cdevServer class to perform special
processing whenever a cdevMessage object is enqueued.

operational virtual int operational (void);

This method returns a boolean integer indicating whether or not
the listening socket has been posted. If the return value is zero,
then the cdevServer cannot receive new connections.
21

8. Properties of the cdevServerInterface Class
8. Properties of the cdevServerInterface Class

Overview The cdevServerInterface class is responsible for managing all server connections for a
specific service on the client side of the connection. In most cases the developer will
not need to modify any of the code associated with this class. The properties of the
cdevServerInterface class are described below.

AttributesofthecdevServer
Interface Class

Reactor static ACE_Reactor Reactor;

This is the ACE Reactor object that is used to respond to input/
output events on the individual sockets. The developer is
responsible for calling the poll or pend method periodically in
order to force events to be handled.

connections ServerConnectionList connections;

This is a list of ServerHandler objects that are used to handle
input/output events on all currently connected servers.

domain char * domain;

This is the name of the domain in which this
cdevServerInterface class is operating. When a server name is
specified, the cdevServerInterface object will poll the Name
Server for the location of the specified server name within this
domain.

defaultServer char * defaultServer;

This is the name of the defaultServer to which messages will be
sent if no other server has been specified. The caller must
specify the name of the default server by using the “set default”
message with the server name in the “value” tag of the
outbound cdevData object.

defaultServerHandler ServerHandler * defaultServerHandler;

This is the ServerHandler object for the default server. It is
maintained separately from the ServerConnectionList in order
to reduce lookup times when the default server is accessed.

maxFd int maxFd;

This is the allocated size of the fdList array.

fdList int * fdList;

This is a an array of integers that contains the file descriptors
that are in use in the ServerHandler objects. The cdevSystem
object will request this list of integers in order to execute the
select system call to determine which file descriptors have
waiting input events.
22 Document Revision: 1

8. Properties of the cdevServerInterface Class
MethodsofthecdevServer
Interface Class

cdevServerInterface cdevServerInterface (char * Domain);

This is the constructor for the cdevServerInterface class. The
Domain is the name of the domain that all servers must be
registered with in the CDEV Name Server.

getDefault virtual char * getDefault (void);

This method returns the name of the default server.

getDomain virtual char * getDomain (void);

This method returns the name of the default Name Server
domain.

setDefault virtual void setDefault (char * Default);

This method allows the caller to set the name of the default
server. This method will cause the cdevServerInterface to
attach to the specified server name within the default Name
Server domain.

connect virtual ServerHandler * connect (char * server);

This method allows the caller to connect to a specified server
within the default Name Server domain. Once connected, the
ServerHandler associated with the connection will be returned
to the caller. If the server is already connected, its current
ServerHandler will be returned.

disconnect virtual ServerHandler * disconnect (char * server);

This method allows the caller to terminate a connection to the
specified server within the default Name Server domain.

enqueue int enqueue (ServerHandler *handler, char *binary, size_t len);

This method enqueues a binary data stream in the outbound
queue for the specified ServerHandler. When the
ServerHandler has reached a high-water mark (or when the
flush method is called), the data in the outbound queue will be
written to the socket.

getFd virtual int getFd (int * &fd, int &numFd);

This method allows the cdevSystem object to get the file
descriptors that are in use by the cdevServerInterface in order
to poll for read events using the select system call.

flush virtual int flush (void);
int flush (int fd);

This method forces the data in the outbound queues for all
ServerHandlers (or the specified ServerHandler if the fd
parameter contains a file descriptor) to be flushed to their
associated sockets. The system will wait for up to five seconds
for all outbound data to be written.
23

8. Properties of the cdevServerInterface Class
pend virtual int pend (double seconds, int fd = -1);

This method calls the handle_events method of the ACE
Reactor to poll for inbound events. If data is ready on any of the
supported sockets, then the ServerHandler objects will be
called to handle the input.
24 Document Revision: 1

9. Properties of the cdevClientService Class
9. Properties of the cdevClientService Class

Overview The cdevClientService class is the class that the developer will directly inherit from in
order to create his new service. This class inherits most of its functionality from the
cdevServerInterface class and either inherits or contains all of the methods necessary
for a CDEV Service. The properties of the cdevClientService class are described
below.

Attributes of the
cdevClientService
Class

callback cdevCallback callback;

This is the callback object that is used to support sendNoBlock
requests because the service implements all operations as
sendCallback operations. In situations where no callback object
has been specified, this one is used by default.

transactions AddressIndex transactions;

This is a table that contains a list of all active transaction
objects. When a transaction is returned from the server, its
associated transaction object is removed from this list and
deleted.

contexts cdevContextMap contexts;

This is a table that contains a copy of all contexts that have
been used by the service. This table is used to allow the
cdevRequestObjects to maintain an integer identifier for their
current context and to simplify detection of context changes to
a specific socket.

tagCallback cdevClientTagCallback tagCallback;

This is a callback object that will be called each time a new tag
is placed in the cdevGlobalTagTable. This callback causes a
new copy of the cdevTagMap to be submitted to each server.

Methods of the
cdevClientService
Class

cdevClientService cdevClientService (char * domain, char * name,
cdevSystem & system =
cdevSystem::defaultSystem());

This is the constructor for the cdevClientService object. The
domain parameter specifies the name of the Name Server
domain where its servers will be found. The name parameter is
the name of the service and the system parameter is a
reference to the cdevSystem object that it will use.

defaultCallback static void defaultCallback (int, void *,
cdevRequestObject &,
cdevData &);

This is the default callback function that is used by the callback
attribute for processing sendNoBlock messages.
25

9. Properties of the cdevClientService Class
outputError virtual int outputError (int severity, char *name,
char *formatString,...);

This method is used by the class to display error and warning
messages. This method calls the reportError method of the
cdevSystem object.

flush int flush (void);

This method causes all messages that are waiting in the
outbound queues to be flushed to their associated sockets.

pend int pend (double seconds, int fd = -1);

This method causes the service to pend for a specified number
of seconds and wait for read events on its file descriptors.

poll int poll (void);

This method causes the service to pend for a very short period
of time and wait for read events on its file descriptors.

pend int pend (int fd = -1);

This method causes the service to pend until the next read
event occurs on one of its file descriptors.

getNameServer int getNameServer (cdevDevice * &ns);

This method is typically used to return a pointer to a service
specific local Name Server device. Because this option is not
currently supported by this service, the ns parameters is set to
NULL and 0 is returned.

getRequestObject int getRequestObject (char * device, char * message,
cdevRequestObject * &req);

This method is used by the cdevSystem object to obtain a
specific cdevRequestObject associated with the specified
device and message.

enqueue int enqueue (char * server, cdevData * in,
cdevTranObj & xobj);

int enqueue (ServerHandler * handler,
cdevData * in, cdevTranObj & xobj);

These methods are called by the cdevClientRequestObject to
enqueue messages to be sent to a specific server. The server
may be specified either by the server name or by the
associated ServerHandler object.

cancel int cancel (cdevTranObj & xobj);

This message is used to cancel a transaction that has already
been sent. Since a transaction cannot be canceled once sent to
the server, this method simply removes its transaction number
from the list of transactions and deletes its transaction object.
26 Document Revision: 1

9. Properties of the cdevClientService Class
enqueue int enqueue (int status, ServerHandler * handler,
char * binary, size_t binaryLen);

This method is called by the cdevServerInterface to enqueue
an inbound packet that has been received from a server. The
status indicates whether the message was successfully sent
and the ServerHandler indicates the server that the message
was destined for. This method will call the fireCallback method
to dispatch the message.

fireCallback void fireCallback (int status, cdevTranObj &xobj,
cdevData *resultData,
int partialTransaction = 0);

This method will execute the callback method associated with
the specified transaction object. If non-zero, the
partialTransaction flag indicates that the request that is being
serviced will generate multiple responses.
27

10. Properties of the cdevClientRequestObject Class
10. Properties of the cdevClientRequestObject Class

Overview The cdevClientRequestObject is a cdevRequestObject class that has been optimized
to operate with the cdevClientService class. The cdevClientRequestObject class has
the following properties.

Attributes of the
cdevClient
RequestObject
Class

sendStatus SendStatus sendStatus;

This is a structure that is used as the user argument to the
default callback for the cdevClientRequestObject. Whenever a
send method is executed, the request object can detect that the
operation has completed by polling this value.

server char server [256];

This is the name of the server that the
cdevClientRequestObject is currently connected to. This value
is maintained in order to reestablish the connection if a
communication error occurs.

DDL_server char DDL_server[256];

This is the server name that is specified in the CDEV DDL file
as the default server for this device/message combination.

syncCallback cdevCallback syncCallback;

This is the callback object that is used to receive the callback
when the send method is executed. The callback used by this
method expects to receive a SendStatus structure as its user
argument.

handler ServerHandler * handler;

This is the ServerHandler object for the server to which the
cdevClientRequestObject is currently attached.

contextID int contextID;

This is the index of the current context from the
cdevContextMap that is maintained in the service. This
identifier is used during transmission to determine if the context
has changed since the last transmission.

commandCode int commandCode;

This is an integer that holds an enumerated type identifying the
command or verb that the cdevClientRequestObject supports.
The standard verbs are “get”, “set”, “monitorOn”, and
“monitorOff”.

messageCode int messageCode;

This is an integer that holds an enumerated type identifying the
message that the cdevClientRequestObject supports. Typically
only messages that are intrinisic to the service layer will be
28 Document Revision: 1

10. Properties of the cdevClientRequestObject Class
enumerated here. The following messages are currently
supported: “get servers”, “get default”, “set default”, and
“disconnect”.

MethodsofthecdevClient
RequestObject
Class constructor cdevClientRequestObject (char * device, char * message,

cdevSystem & system =
cdevSystem::defaultSystem());

This is the constructor for the cdevClientRequestObject. It will
check the CDEV DDL file to determine if a default server has
been established for this device/message combination.

setContext virtual int setContext (cdevData & ctx);

This method is used to set the context for the
cdevClientRequestObject. The context may be used to
establish the default server that the request object will
communicate with if the server tag has been set. If the server
tag is unspecified, then the server specified in the CDEV DDL
file will be used. If no server has been specified in the CDEV
DDL file, then the request object will rely on the
cdevClientService to use the default server.

send virtual int send (cdevData & in, cdevData & out);
virtual int send (cdevData * in, cdevData & out);
virtual int send (cdevData & in, cdevData * out);
virtual int send (cdevData * in, cdevData * out);

This method will synchronously transmit the device/message
combination to the server. See the setContext method for
details on how the target server is selected.

sendNoBlock virtual int sendNoBlock (cdevData & in, cdevData & out);
virtual int sendNoBlock (cdevData * in, cdevData & out);
virtual int sendNoBlock (cdevData & in, cdevData * out);
virtual int sendNoBlock (cdevData * in, cdevData * out);

This method will asynchronously transmit the device/message
combination to the server. The caller is required to poll the
system in order to allow the transmission to be processed. See
the setContext method for information on how the target server
is selected.

 sendCallback virtual int sendCallback (cdevData & in, cdevCallback &);
virtual int sendCallback (cdevData * in, cdevCallback &);

This method will asynchronously transmit the device/message
combination to the server and will call a developer specified
callback function when the message has been processed. The
caller is required to poll the system in order to provide time for
the transmission to be processed. See the setContext method
for information on how the target server is selected.
29

10. Properties of the cdevClientRequestObject Class
className virtual const char * className (void) const;

This method returns the name of the class.

defaultCallback static void defaultCallback (int status, void * user,
cdevRequestObject &,
cdevData &);

This is the callback function that will be executed when the
synchronous send method has been used. It will set the value
of the SendStatus structure that was passed as its user
argument to indicate completion and the status of the call.

executeServerHandlerCallback
virtual void executeServerHandlerCallback (ServerHandler*);

This method is inherited from the ServerHandlerCallback
method and will be called by the ServerHandler that is currently
in use by this request object prior to its destruction. This allows
the request object to set the pointer to NULL to avoid accessing
an invalid or deleted data item later.

getServerHandler virtual int getServerHandler (ServerHandler ** Handler);

This method allows the caller to get a pointer to the
ServerHandler that is in use by the cdevClientRequestObject.
When called, this method will check the class parameters and
attach or reattach to a server if necessary before returning the
ServerHandler object.

getContextID int getContextID (void);

This method returns the context index that uniquely identifies
the context that is in use within this cdevClientRequestObject.
This value is used by the service to determine if the context
data needs to be retransmitted to the server.

getCommandCode int getCommandCode (void);

This method returns the command code that identifies the verb
portion of the message used by this request object. This code
is used by the service to avoid having to perform string
comparisons to identify the message content.

getMessageCode int getMessageCode (void);

This method returns the message code that identifies the
message in use by this request object. This code is used by the
service to identify messages that may be processed locally
rather than being transmitted to the server.
30 Document Revision: 1

11. Implementing Monitoring on the cdevServer
11. Implementing Monitoring on the cdevServer

Overview Monitoring is implemented on the cdevServer by the use of a cdevMonitorTable
class. This class stores a collection of cdevMonitorNode objects that are represented
by a device name and its associated attribute name. Within each of the
cdevMonitorNode objects there is a list of cdevMonitorEntry objects that contain
information regarding an individual monitor request - this information is stored in the
form of the cdevMessage object that was used to place the request.

The cdevMonitorTable provides the methods to insert and remove monitors and to
retrieve the cdevMonitorNode objects that are used by individual device/attribute
pairs. By using the node directly to trigger monitors, the application can greatly speed
the delivery of messages when a monitored value changes.

The following object model describes the general structure of the cdevMonitorTable.

Figure 3: General Structure of the cdevMonitorTable

Special Notes Because a monitor generates many responses from the request, the service has to be
able to differentiate it from the transaction that generate a single response. To
accomodate this, the cdevMonitorTable uses the operationCode member of the
cdevMessage structure to indicate that the result is one message of many messages
that may be generated. If the first bit of the operationCode is non-zero, then the
response is one of many. If the first bit of the operationCode is zero, then this is the
last response that will be generated by the monitorOn request.

Attributes of the
cdevMonitorTable
Class

monitors StringHash monitors;

This is a hash table that is hashed on a string representation of
the device/attribute combination. Each hash entry points to the
cdevMonitorNode for that specific hash string combination.

Methods of the
cdevMonitorTable
Class

insertMonitor int insertMonitor (cdevMessage * request,
cdevData * data);

int insertMonitor (cdevMessage * request,
cdevData ** data, size_t dataCnt);

This method allows the caller to insert a new monitor for the
device and attribute that are specified in the cdevMessage
object. The data that is provided with the call contains the

class cdevMonitorNode

class cdevMonitorTable

class cdevMonitorEntry

class cdevMessage
1

31

11. Implementing Monitoring on the cdevServer
current settings for all properties of the device/attribute
combination and will be used to dispatch the initial callback. If
the cdevMessage object contains a list of multiple devices, then
the second insertMonitor method is used to provide an array of
cdevData objects containing the settings for each device.

The cdevMessage object that is provided to this method
becomes the property of the cdevMonitorTable and should not
be accessed again by the caller.

removeMonitor int removeMonitor (cdevMessage * request);

This method allows the caller to remove a monitor that was
previously installed using the insertMonitor method.

removeClientMonitors int removeClientMonitors(short clientID);

This method will remove all monitors that are associated with a
specific client identifier. This method is typically employed to
remove all of a client’s monitors when it is disconnected.

findMonitor cdevMonitorNode * findMonitor (char * device,
char * attrib);

This method is used to locate the collection of monitors that is
associated with one device/attribute pair. An object that
manages the values of that device/attribute pair may use this
cdevMonitorNode to directly trigger monitors when one or more
its properties are changed.

fireMonitor int fireMonitor (char * device, char * attrib,
char * property, cdevData * data);

int fireMonitor (char * device, char * attrib,
int property, cdevData * data);

This method is used to trigger the callbacks for the monitors
that are associated with the specified device/attribute pair. The
property that has been changed is provided in the property
parameter and a list of the current values of all properties
should be provided in the data parameter. When this method is
called it will locate all monitors that are triggered by the
specified property and will use the context associated with the
monitor to load the desired property values into the outbound
data object.

fireCallback int fireCallback (cdevMessage * message);

This is a pure virtual method that the developer must provide.
This method is called when the cdevMonitorTable has a monitor
that needs to be dispatched. The data is provided to the
method in the form of a cdevMessage object which must be
dispatched to the client using the user provided mechanisms.
32 Document Revision: 1

11. Implementing Monitoring on the cdevServer
Attributes of the
cdevMonitorNode
Class

parent class cdevMonitorTable * parent;

This is a pointer to the cdevMonitorTable that contains this
cdevMonitorNode. This pointer will be used to access the user
defined fireCallback method when a monitor must be
dispatched.

node cdevMonitorEntry * nodes;

This is a list of all of the monitors that are associated with this
cdevMonitorNode.

hashString char * hashString;

This is a unique string that is composed of the device name
and attribute that is used to identify this cdevMonitorNode
within the list of all cdevMonitorNodes that a cdevMonitorTable
may be managing.

Methods of the
cdevMonitorNode
Class

fireMonitor int fireMonitor (char * property, cdevData * data);
int fireMonitor (int property, cdevData * data);

This method is called in order to trigger all monitors that are
associated with the specified property. When the method is
called it will walk through the cdevMonitorEntry objects and
locate each one that is associated with the specified property. It
will then evaluate the context for that entry and populate the
outbound data with the appropriate properties before calling
the fireCallback method of its parent cdevMonitorTable object.

isMonitored int isMonitored (void);

This method returns a boolean value that indicates if there are
any active monitors that have been placed on this
cdevMonitorNode object.
33

12. VirtualService: A Complex Client/Server Implementation
12. VirtualService: A Complex Client/Server Implementation

Overview The VirtualService example gives the developer a complex illustration of how to create
a client/server system that provides for getting, setting and monitoring specific
properties of a virtual device/attribute pair. By examining the source code, the
developer can also get an understanding of the different approaches used to return
message completion codes to the client and how to establish and trigger monitors
using the components that are provided with the distribution.

Virtual Server
Structure

The server side of the VirtualService example is structured as described in the object
model below.

Figure 4: Components of the Virtual Server

Virtual Service
Structure

The client side of the VirtualService example is much less complex and inherits
almost all of its functionality from the cdevClientService class and declares no
specialized request object class.

Figure 5: Components of the Virtual Service

class cdevMonitorNode

class cdevMonitorTable

1

class cdevServer

class VirtualServer

class stringHash

class VirtualAttrib

class cdevMonitorEntry

class cdevClientService

class VirtualService
34 Document Revision: 1

V
irtualA

ttrib.h

35

b object is used to represent a single
d an associated attribute. This device/
. All of these properties are set using
e and to allow the monitor callbacks to

properties of the VirtualAttrib using a
thods allow the caller to read selected

Virtual Attrib Identifiers

Modifiable Properties
VirtualAttrib.h The following header file defines the structure of the VirtualAttrib class. A VirtualAttri
entity within the VirtualServer. Each VirtualAttrib is represented by a device name an
attribute pair has a collection of properties that may be read, written to, or monitored
methods in order to allow the class to ensure that they are set within the specified rang
be fired when a value changes.

Additionally, helper functions have been added that allow the caller to populate the
cdevData object that contains tagged data items that specify the new values. Other me
properties into an outbound cdevData object using a caller specified context.

#ifndef _VIRTUAL_ATTRIB_H_
#define _VIRTUAL_ATTRIB_H_ 1

#include <cdevData.h>
#include <VirtualServer.h>

// ***
// * class VirtualAttrib:
// *This class maintains a list of items that make-up a Virtual Attrib. And
// *access mechanisms.
// ***
class VirtualAttrib
{
private:

char * device;
char * attrib;
cdevMonitorNode * monitors;

double value;
char status [255];
char severity[255];
char units [255];
double alarmHigh;
double alarmLow;
double warningHigh;
double warningLow;
double controlHigh;
double controlLow;
int resultCode;

V
irtualA

ttrib.h

36
D

ocum
ent R

evision: 1

Insert/Extract Methods

Set Property Methods

Get Property Methods

Monitoring Methods
public:
VirtualAttrib (char * Device, char * Attrib);
~VirtualAttrib (void);

int setFromData (cdevData * data);
void getToData (cdevData * data, cdevData * context = NULL);
void getAllToData (cdevData * data);

int setValue (double Value);
int setStatus (char * Status);
int setSeverity (char * Severity);
int setUnits (char * Units);
int setAlarmHigh (double AlarmHigh);
int setAlarmLow (double AlarmLow);
int setWarningHigh (double WarningHigh);
int setWarningLow (double WarningLow);
int setControlHigh (double ControlHigh);
int setControlLow (double ControlLow);
void checkAlarms (void);

double getValue (void) { return value; }
char * getStatus (void) { return status; }
char * getSeverity (void) { return severity; }
char * getUnits (void) { return units; }
double getAlarmHigh (void) { return alarmHigh; }
double getAlarmLow (void) { return alarmLow; }
double getWarningHigh (void) { return warningHigh; }
double getWarningLow (void) { return warningLow; }
double getControlHigh (void) { return controlHigh; }
double getControlLow (void) { return controlLow; }
int getResultCode (void) { return resultCode; }

void insertMonitor (cdevMonitorTable * table, cdevMessage * message);
void removeMonitor (cdevMonitorTable * table, cdevMessage * message);

};

#endif

V
irtualA

ttrib.cc

37

ass. The methods below are used to
nted by each VirtualDevice object.

d with the associated tag identifiers
. By using the tag identifier integer
er string, performance is greatly
stored in the cdevData object.

bject makes a copy of the name of
tializes all of its internal properties.
s for a range specification (such as
cification is disabled.
VirtualAttrib.cc This is the source file that defines the implementation details of the VirtualDevice cl
insert and retrieve properties associated with the device/attribute pairs that are represe

#include <VirtualAttrib.h>

static int VALUE_TAG = -1;
static int STATUS_TAG = -1;
static int SEVERITY_TAG = -1;
static int UNITS_TAG = -1;
static int ALARMHIGH_TAG = -1;
static int ALARMLOW_TAG = -1;
static int WARNINGHIGH_TAG = -1;
static int WARNINGLOW_TAG = -1;
static int CONTROLHIGH_TAG = -1;
static int CONTROLLOW_TAG = -1;

// ***
// * VirtualAttrib::VirtualAttrib :
// *This is the constructor for the VirtualAttrib class. It initializes the
// *internal mechanisms to 0.
// ***
VirtualAttrib::VirtualAttrib (char * Device, char * Attrib)

: device(strdup(Device)),
 attrib(strdup(Attrib)),
 monitors(NULL),
 value(0.0),
 alarmHigh(0.0),
 alarmLow(0.0),
 warningHigh(0.0),
 warningLow(0.0),
 controlHigh(0.0),
 controlLow(0.0)
{
*severity = 0;
*units = 0;
strcpy(status, “NORMAL”);
}

These static integers will be populate
that are used in the cdevData object
rather than the associated charact
improved when accessing properties

The constructor for the VirtualAttrib o
the device and attribute and then ini
Note that if the ‘high’ and ‘low’ value
alarm) are equal, then that range spe

V
irtualA

ttrib.cc

38
D

ocum
ent R

evision: 1

ct only needs to delete the device
 when the object was created.

When a “set” cdevMessage
object is received in the
processMessages method of
the VirtualServer, it contains a
cdevData object that has a list
of properties and values. For
each property that is specified
this method will call the set
method with the new value. If
the value is different than the
previous value and the
property is monitored, then the
callback will be fired at that
time.

The result of this operation is
indicated by success in setting
the value property.
// ***
// * VirtualAttrib::~VirtualAttrib :
// *This is the destructor for the VirtualAttrib class. It must free the
// *memory associated with the device and attribute names.
// ***
VirtualAttrib::~VirtualAttrib (void
)

{
delete device;
delete attrib;
}

// ***
// * VirtualAttrib::setFromData :
// *This method will populate the VirtualAttrib object with the data contained in
// *the cdevData object.
// ***
int VirtualAttrib::setFromData (cdevData * data)

{
double val;
int result;
if(data!=NULL)

{
result = CDEV_SUCCESS;
data->get(UNITS_TAG, units, 255);
if(data->get(CONTROLLOW_TAG, &val)==CDEV_SUCCESS) setControlLow(val);
if(data->get(CONTROLHIGH_TAG, &val)==CDEV_SUCCESS) setControlHigh(val);
if(data->get(ALARMLOW_TAG, &val)==CDEV_SUCCESS) setAlarmLow(val);
if(data->get(ALARMHIGH_TAG, &val)==CDEV_SUCCESS) setAlarmHigh(val);
if(data->get(WARNINGLOW_TAG, &val)==CDEV_SUCCESS) setWarningLow(val);
if(data->get(WARNINGHIGH_TAG, &val)==CDEV_SUCCESS) setWarningHigh(val);
if(data->get(VALUE_TAG, &val)==CDEV_SUCCESS)

{
result=setValue(val);
}

}
else result = CDEV_ERROR;
checkAlarms();
return result;
}

The destructor for a VirtualAttrib obje
and attrib strings that were duplicated

V
irtualA

ttrib.cc

39

essage object is received in the
ethod of the VirtualServer, it

at indicates the properties that the
eturned. This method walks through
and copies each property that is
xt into the cdevData object pointed

eter. Once populated, this object will
ller.

pty, then the “value”, “status”, and
// ***
// * VirtualAttrib::getToData :
// *This method will populate the VirtualAttrib object with the data contained in
// *the cdevData object.
// ***
void VirtualAttrib::getToData (cdevData * data, cdevData * context)

{
if(data!=NULL)

{
data->remove();
if(context!=NULL)

{
if(context->getType(VALUE_TAG)!=CDEV_INVALID)

data->insert(VALUE_TAG, getValue());
if(context->getType(STATUS_TAG)!=CDEV_INVALID)

data->insert(STATUS_TAG, getStatus());
if(context->getType(SEVERITY_TAG)!=CDEV_INVALID)

data->insert(SEVERITY_TAG, getSeverity());
if(context->getType(UNITS_TAG)!=CDEV_INVALID)

data->insert(UNITS_TAG, getUnits());
if(context->getType(CONTROLLOW_TAG)!=CDEV_INVALID)

data->insert(CONTROLLOW_TAG, getControlLow());
if(context->getType(CONTROLHIGH_TAG)!=CDEV_INVALID)

data->insert(CONTROLHIGH_TAG, getControlHigh());
if(context->getType(ALARMLOW_TAG)!=CDEV_INVALID)

data->insert(ALARMLOW_TAG, getAlarmLow());
if(context->getType(ALARMHIGH_TAG)!=CDEV_INVALID)

data->insert(ALARMHIGH_TAG, getAlarmHigh());
if(context->getType(WARNINGLOW_TAG)!=CDEV_INVALID)

data->insert(WARNINGLOW_TAG, getWarningLow());
if(context->getType(WARNINGHIGH_TAG)!=CDEV_INVALID)

data->insert(WARNINGHIGH_TAG, getWarningHigh());
}

else
{
data->insert(VALUE_TAG, getValue());
data->insert(STATUS_TAG, getStatus());
data->insert(SEVERITY_TAG, getSeverity());
}

}
}

When a “get” cdevM
processMessages m
contains a context th
caller desires to be r
the context object
specified in the conte
to by the data param
be returned to the ca

If the context is em

V
irtualA

ttrib.cc

40
D

ocum
ent R

evision: 1

method, this method will populate
will all properties that are currently
alAttrib object.

ue property within the VirtualAttrib
ecified using the controlHigh and
that the new value conforms to the
o high or too low.
// ***
// * VirtualAttrib::getAllToData :
// *This method will populate the VirtualAttrib object with the data contained in
// *the cdevData object.
// ***
void VirtualAttrib::getAllToData (cdevData * data)

{
if(data!=NULL)

{
data->remove();
data->insert(VALUE_TAG, getValue());
data->insert(STATUS_TAG, getStatus());
data->insert(SEVERITY_TAG, getSeverity());
data->insert(UNITS_TAG, getUnits());
data->insert(CONTROLLOW_TAG, getControlLow());
data->insert(CONTROLHIGH_TAG, getControlHigh());
data->insert(ALARMLOW_TAG, getAlarmLow());
data->insert(ALARMHIGH_TAG, getAlarmHigh());
data->insert(WARNINGLOW_TAG, getWarningLow());
data->insert(WARNINGHIGH_TAG, getWarningHigh());
}

}

// ***
// * VirtualAttrib::setValue :
// *This method allows the caller to set the value of the Virtual Attrib.
// *This call will fail if the specified value is outside of the legal
// *range.
// ***
int VirtualAttrib::setValue (double Value)

{
resultCode = CDEV_SUCCESS;

if(controlHigh>controlLow &&
 (Value<controlLow || Value>controlHigh))

{
resultCode = CDEV_OUTOFRANGE;
}

else if(value != Value)
{
value = Value;

Unlike the getToData
the cdevData object
contained in the Virtu

The setValue method is used to set the val
object. Since the overall range may be sp
controlLow properties, this method will ensure
range (if specified) and will fail if the value is to

V
irtualA

ttrib.cc

41

after the value has been set. The
e new value places the VirtualAttrib
he confines that are specified in the
properties.

all properties will be copied into a
s for the value property will be fired.

y monitors that may be associated

ny monitors that may be associated
checkAlarms();
if(monitors && monitors->isMonitored())

{
cdevData data;
getAllToData(&data);
monitors->fireMonitor(VALUE_TAG, &data);
}

}
return resultCode;
}

// ***
// * VirtualAttrib::setStatus :
// *This method allows the caller to set the status of the device.
// ***
int VirtualAttrib::setStatus (char * Status)

{
if(strcmp(status, Status))

{
strncpy(status, Status, 255);
status[254] = 0;
if(monitors && monitors->isMonitored())

{
cdevData data;
getAllToData(&data);
monitors->fireMonitor(STATUS_TAG, &data);
}

}
return CDEV_SUCCESS;
}

// ***
// * VirtualAttrib::setSeverity :
// *This method allows the caller to set the severity flag for the device.
// ***
int VirtualAttrib::setSeverity (char * Severity)

{
if(strcmp(severity, Severity))

{
strncpy(severity, Severity, 255);
severity[254] = 0;
if(monitors && monitors->isMonitored())

The checkAlarms method is called
checkAlarms method determines if th
in a warning or alarm state based on t
alarmHigh/Low and warningHigh/Low

If the VirtualAttrib is monitored, then
cdevData object and the list of monitor

Sets the status property and fires an
with that value.

Sets the severity property and fires a
with that value.

V
irtualA

ttrib.cc

42
D

ocum
ent R

evision: 1

onitors that may be associated with

lls checkAlarms to determine if a
hange in the device alarm status.
ciated with the property.
{
cdevData data;
getAllToData(&data);
monitors->fireMonitor(SEVERITY_TAG, &data);
}

}
return CDEV_SUCCESS;
}

// ***
// * VirtualAttrib::setUnits :
// *This method allows the caller to set the units for the device.
// ***
int VirtualAttrib::setUnits (char * Units)

{
if(strcmp(units, Units))

{
strncpy(units, Units, 255);
units[254] = 0;
if(monitors && monitors->isMonitored())

{
cdevData data;
getAllToData(&data);
monitors->fireMonitor(UNITS_TAG, &data);
}

}
return CDEV_SUCCESS;
}

// ***
// * VirtualAttrib::setAlarmHigh :
// *This method allows the caller to set the high alarm value of the device.
// ***
int VirtualAttrib::setAlarmHigh (double AlarmHigh)

{
if(alarmHigh!=AlarmHigh)

{
alarmHigh = AlarmHigh;
checkAlarms();
if(monitors && monitors->isMonitored())

{
cdevData data;

Sets the units property and fires any m
that value.

Sets the alarmHigh property and ca
change in this value will trigger a c
Dispatches any monitors that are asso

V
irtualA

ttrib.cc

43

lls checkAlarms to determine if a
hange in the device alarm status.
ciated with the property.

alls checkAlarms to determine if a
ange in the device warning status.
ciated with the property.
getAllToData(&data);
monitors->fireMonitor(ALARMHIGH_TAG, &data);
}

}
return CDEV_SUCCESS;
}

// ***
// * VirtualAttrib::setAlarmLow :
// *This method allows the caller to set the low alarm value of the device.
// ***
int VirtualAttrib::setAlarmLow (double AlarmLow)

{
if(alarmLow!=AlarmLow)

{
alarmLow = AlarmLow;
checkAlarms();
if(monitors && monitors->isMonitored())

{
cdevData data;
getAllToData(&data);
monitors->fireMonitor(ALARMLOW_TAG, &data);
}

}
return CDEV_SUCCESS;
}

// ***
// * VirtualAttrib::setWarningHigh :
// *This method allows the caller to set the high warning value of a device.
// ***
int VirtualAttrib::setWarningHigh (double WarningHigh
)

{
if(warningHigh!=WarningHigh)

{
warningHigh = WarningHigh;
checkAlarms();
if(monitors && monitors->isMonitored())

{
cdevData data;
getAllToData(&data);

Sets the alarmLow property and ca
change in this value will trigger a c
Dispatches any monitors that are asso

Sets the warningHigh property and c
change in this value will trigger a ch
Dispatches any monitors that are asso

V
irtualA

ttrib.cc

44
D

ocum
ent R

evision: 1

alls checkAlarms to determine if a
ange in the device warning status.
ciated with the property.

calls checkAlarms to determine if a
a change in the device status.

sociated with the property.
monitors->fireMonitor(WARNINGHIGH_TAG, &data);
}

}
return CDEV_SUCCESS;
}

// ***
// * VirtualAttrib::setWarningLow :
// *This method allows the caller to set the low warning value of a device.
// ***
int VirtualAttrib::setWarningLow (double WarningLow)

{
if(warningLow != WarningLow)

{
warningLow = WarningLow;
checkAlarms();
if(monitors && monitors->isMonitored())

{
cdevData data;
getAllToData(&data);
monitors->fireMonitor(WARNINGLOW_TAG, &data);
}

}
return CDEV_SUCCESS;
}

// ***
// * VirtualAttrib::setControlHigh :
// *This method allows the caller to set the maximum value for a device.
// ***
int VirtualAttrib::setControlHigh (double ControlHigh)

{
if(controlHigh != ControlHigh)

{
controlHigh = ControlHigh;
checkAlarms();
if(monitors && monitors->isMonitored())

{
cdevData data;
getAllToData(&data);
monitors->fireMonitor(CONTROLHIGH_TAG, &data);
}

Sets the warningLow property and c
change in this value will trigger a ch
Dispatches any monitors that are asso

Sets the controlHigh property and
change in this value will trigger
Dispatches any monitors that are as

V
irtualA

ttrib.cc

45

alls checkAlarms to determine if a
a change in the device status.

sociated with the property.

rty against the ranges that may be
larmHigh/Low and controlHigh/Low
any of these ranges, then the status

corresponding value: “WARNING”,
}
return CDEV_SUCCESS;
}

// ***
// * VirtualAttrib::setControlLow :
// *This method allows the caller to set the minimum value of a device.
// ***
int VirtualAttrib::setControlLow (double ControlLow)

{
if(controlLow != ControlLow)

{
controlLow = ControlLow;
checkAlarms();
if(monitors && monitors->isMonitored())

{
cdevData data;
getAllToData(&data);
monitors->fireMonitor(CONTROLLOW_TAG, &data);
}

}
return CDEV_SUCCESS;
}

// ***
// * VirtualAttrib::checkAlarms :
// *This method allows the caller to read the value in comparison with all
// *of its limits and set the status and severity tag appropriately.
// ***
void VirtualAttrib::checkAlarms (void)

{
int done = 0;
if(controlHigh>controlLow)

{
if(value<controlLow)

{
setStatus(“OUT OF RANGE LOW”);
setSeverity(“ERROR”);
done = 1;
}

else if (value>controlHigh)
{

Sets the controlLow property and c
change in this value will trigger
Dispatches any monitors that are as

This method tests the value prope
specified in the warningHigh/Low, a
properties. If the value is outside of
and severity variables will be set to a
“ALARM”, or “ERROR”

V
irtualA

ttrib.cc

46
D

ocum
ent R

evision: 1
setStatus(“OUT OF RANGE HIGH”);
setSeverity(“ERROR”);
done = 1;
}

}
if(!done && alarmHigh>alarmLow)

{
if(value<alarmLow)

{
setStatus(“ALARM LOW”);
setSeverity(“ALARM”);
done = 1;
}

else if (value>alarmHigh)
{
setStatus(“ALARM HIGH”);
setSeverity(“ALARM”);
done = 1;
}

}
if(!done && warningHigh>warningLow)

{
if(value<warningLow)

{
setStatus(“WARNING LOW”);
setSeverity(“WARNING”);
done = 1;
}

else if (value>warningHigh)
{
setStatus(“WARNING HIGH”);
setSeverity(“WARNING”);
done = 1;
}

}
if(!done)

{
setStatus(“NORMAL”);
setSeverity(“\0”);
}

}

V
irtualA

ttrib.cc

47

ethod of the VirtualServer class
t receives a “monitorOn” message.
f the current property values into a

n submits the cdevMessage object
insertMonitor method of the

t. The method will then call
de in the cdevMonitorTable for later

ge object becomes the property of
ject and should not be accessed

ethod of the VirtualServer class
t receives a “monitorOff” message.
e removeMonitor method of the
ve the monitor.

removed that are associated with
hen the monitors pointer will be set
// ***
// * VirtualAttrib::insertMonitor :
// *This message adds a monitor to the cdevMonitorTable for this device/
// *attribute pair. The message parameter becomes the property of the
// *monitorTable and should not be accessed again by the caller.
// ***
void VirtualAttrib::insertMonitor (cdevMonitorTable * table, cdevMessage * message)

{
if(table!=NULL && message!=NULL)

{
cdevData data;
getAllToData(&data);
table->insertMonitor(message, &data);
monitors = table->findMonitor(device, attrib);
if(monitors && !monitors->isMonitored()) monitors = NULL;
}

else if(message!=NULL) delete message;
}

// ***
// * VirtualAttrib::removeMonitor:
// *This method uses the cancelTransIdx to locate and delete a monitor
// *that was previously posted using that transaction index.
// ***
void VirtualAttrib::removeMonitor (cdevMonitorTable * table, cdevMessage * message)

{
if(table!=NULL && message!=NULL)

{
table->removeMonitor(message);
if(monitors && !monitors->isMonitored()) monitors = NULL;
}

}

The processMessages m
calls this method when i
This method collects all o
cdevData object and the
and the data to the
cdevMonitorTable objec
findMonitor to locate its no
access.

Note that the cdevMessa
the cdevMonitorTable ob
again.

The processMessages m
calls this method when i
The method will call th
cdevMonitorTable to remo

If all monitors have been
this VirtualAttrib object, t
to NULL.

V
irtualS

erver.h

48
D

ocum
ent R

evision: 1

rver class inherits its functionality from
d it calls the populateTable method to
late any of the devices that the server
VirtualServer.h The following header file defines the structure of the VirtualServer class. The VirtualSe
the cdevServer object and consequently has to do very little initialization. When create
generate a list of VirtualAttrib objects that it will support, the service may then manipu
has created using the commands “get”, “set”, “monitorOn”, and “monitorOff”.

#include <cdevServer.h>
#include <StringHash.h>
#include <cdevMonitorTable.h>
// ***
// * class VirtualServer :
// * This is the server class for the VirtualDevice. It simply receives
// * messages from a client and immediately returns them.
// *
// * The constructor passes the domain, server, port and rate to the
// * underlying cdevServer class to be processed. The cdevServer constructor
// * will add this server to the Name Server and will begin processing
// * messages when the cdevServer::runServer() method is executed.
// *
// * The processMessages method is the servers interface to the world... Each
// * time a complete message is received or the time specified in rate
// * expires, that method will be called.
// ***
class VirtualServer : public cdevServer, public cdevMonitorTable
{
private:

StringHash attribHash;
public:

VirtualServer (char * domain, char * server, unsigned int port, double rate)
: cdevServer(domain, server, port, rate), attribHash()
{
populateTable();
}

virtual ~VirtualServer (void);
virtual void processMessages (void);
void populateTable (void);
virtual int fireCallback (cdevMessage * message);

};

V
irtualS

erver.cc

49

le. The methods that are contained in
ed by default by the cdevServer class.

lServer object. It is responsible for
ttrib objects that were created and
rior to terminating.

to generate a collection of device
s that will be used to create a hash

evice names are “device0” through
butes “attrib0” through “attrib9”.

monitorOn” or “monitorOff” methods
iated with any of these VirtualAttrib
VirtualServer.cc This source file implements the classes that are defined in the VirtualServer.h header fi
this file define the functionality for the VirtualServer that is different from what is provid

#include <VirtualServer.h>
#include <VirtualAttrib.h>

VirtualServer::~VirtualServer (void)
{
StringHashIterator iter(&attribHash);
VirtualAttrib * attrib = NULL;
char * key = NULL;

iter.first();
while((key=iter.key())!=NULL)

{
attrib = (VirtualAttrib *)iter.data();
iter++;
attribHash.remove(key);
if(attrib!=NULL) delete attrib;
}

}

void VirtualServer::populateTable (void)
{
char device[10];
char attrib[10];
char key[20];
for(int i=0; i<10; i++)

{
for(int j=0; j<10; j++)

{
sprintf(device, “device%i”, i);
sprintf(attrib, “attrib%i”, j);
sprintf(key, “device%i attrib%i”, i, j);
attribHash.insert(key, new VirtualAttrib(device, attrib));
}

}
}

This is the destructor for the Virtua
walking through the list of VirtualA
deleting each of them from the list p

The populateTable method is used
names and their associated attribute
table of VirtualAttrib objects. The d
“device9”, and each device has attri

The client may use the “get”, “set”, “
to manipulate the properties assoc
objects.

V
irtualS

erver.cc

50
D

ocum
ent R

evision: 1

e called whenever data is waiting to
. When called, this method should

as available and then return 0.

thod must dequeue it, process it,
he original cdevMessage object.

register” message is automatically
is received, the VirtualServer will
 client.

values of one or more properties as
tion locates the VirtualAttrib object
bute portion of the message. It then
e VirtualAttrib object to read the
ontexts.

operty is set to CDEV_SUCCESS to
ll completed successfully.
void VirtualServer::processMessages (void)
{
char key[255];
int saveMessageFlag;
int sendMessageFlag;
cdevMessage * message;
VirtualAttrib * attrib;
cdevData output;

while(dequeue(message)==0)
{
// ***
// * Note at this point a cdevTagMap has already been received
// * from the client. This tag map will have initialized all
// * of the tags that are required by the service.
// ***
if(!strcmp(message->getMessage(), “unregister”))

{
sendMessageFlag = 0;
removeClientMonitors(message->getClientID());
}

if(!strncmp(message->getMessage(), “get “, 4))
{
output.remove();
saveMessageFlag = 0;
sendMessageFlag = 1;

sprintf(key, “%s %s”,
 message->getDeviceList()[0],
 &message->getMessage()[4]);

if((attrib = (VirtualAttrib *)attribHash.find(key))!=NULL)
{
attrib->getToData(&output, message->getContext());
output.insert(“resultCode”, CDEV_SUCCESS);
}

else output.insert(“resultCode”, CDEV_NOTFOUND);
}

The processMessages method will b
be processed in the inbound queue
process all of the messages that it h

To process a cdevMessage the me
enqueue the result and then delete t

When a client disconnects, an “un
generated. When this message
remove all monitors installed by the

A “get” message is sent to read the
specified by the context. This sec
using the device name and the attri
calls the getToData method of th
properties that are specified in the c

The resultCode pr
indicate that the ca

V
irtualS

erver.cc

51

values of specific properties to the
bound cdevData object. This section
te portion of the message to locate

ect. It then uses the setFromData
py the values into the object. The
ata method is inserted into the
the request completed successfully.

is used to establish a monitor that
ssage each time one or more of the
e context object is changed.

insertMonitor method to install the
 VirtualAttrib object.

e is used to remove one or more
iously installed using the monitorOn
nsIndex component of the inbound
dicates the monitor that will be
else if(!strncmp(message->getMessage(), “set “, 4))
{
output.remove();
saveMessageFlag = 0;
sendMessageFlag = 1;

sprintf(key, “%s %s”,
 message->getDeviceList()[0],
 &message->getMessage()[4]);

if((attrib = (VirtualAttrib *)attribHash.find(key))!=NULL)
{
output.insert(“resultCode”,

 attrib->setFromData(message->getData()));
}

else output.insert(“resultCode”, CDEV_NOTFOUND);
}

else if(!strncmp(message->getMessage(), “monitorOn “, 10))
{
saveMessageFlag = 1;
sendMessageFlag = 0;

sprintf(key, “%s %s”,
 message->getDeviceList()[0],
 &message->getMessage()[10]);

if((attrib = (VirtualAttrib *)attribHash.find(key))!=NULL)
{
attrib->insertMonitor(this, message);
}

}
else if(!strncmp(message->getMessage(), “monitorOff “, 11))

{
saveMessageFlag = 0;
sendMessageFlag = 1;

sprintf(key, “%s %s”,
 message->getDeviceList()[0],
 &message->getMessage()[11]);

if((attrib = (VirtualAttrib *)attribHash.find(key))!=NULL)

A “set” message is sent to set the
values that are specified in the in
uses the device name and attribu
the appropriate VirtualAttrib obj
method of the VirtualAttrib to co
return value of the setFromD
resultCode property to indicate if

A “monitorOn” message
will trigger a callback me
properties specified in th

This method uses the
monitor on the specified

A “monitorOff” messag
monitors that were prev
message. The cancelTra
cdevMessage object in
terminated.

V
irtualS

erver.cc

52
D

ocum
ent R

evision: 1

essage should be provided to the
en the return message has already
ble object.

devMonitorTable to install a monitor,

vMonitorTable portion of the class
nged. It is only required to enqueue

an be returned to the client with the

ce of the VirtualServer class named
ame Server domain “VIRTUAL” and
port 9120. The processMessages
t least every 60 seconds.
{
attrib->removeMonitor(this, message);
}

}
else

{
saveMessageFlag = 0;
sendMessageFlag = 1;
output.insert(“resultCode”, CDEV_NOTFOUND);
}

if(sendMessageFlag)
{
message->setData(&output, 1);
enqueue(message);
}

if(!saveMessageFlag) delete message;
}

}

int VirtualServer::fireCallback (cdevMessage * message)
{
int result = CDEV_SUCCESS;
cdevData * data = NULL;

if(message && (data = message->getData())!=NULL)
{
data->insert(“resultCode”, CDEV_SUCCESS);
result = enqueue(message);
}

return result;
}

void main()
{
VirtualServer server(“VIRTUAL”, “TestServerX”, 9120, 60);
cdevServer::runServer();
}

The sendMessageFlag indicates whether a return m
caller. If the message was a monitorOn request, th
been automatically dispatched by the cdevMonitorTa

If the cdevMessage object was not provided to the c
then it should be deleted.

This method is called by the cde
whenever a monitored value has cha
the cdevMessage object so that it c
new value.

The main function creates an instan
“TestServerX”, which will have the N
will listen for incoming requests on
method will be called automatically a

V
irtualS

ervice.h

53

be loaded by the cdevSystem in order

newVirtualService function will
ate the initial instance of the
tualService class.

VirtualService class inherits
ost all of its functionality from the
vClientService class.

The fireCallback method has been
overloaded in order to allow the
service to copy the resultCode
property from the returned
cdevData object into the
completion status for the
cdevCallback function.
VirtualService.h The VirtualService.h header file describes the structure of the VirtualService that will
to accomodate requests made to the VirtualServer.

#include <cdevClientService.h>

// ***
// * newVirtualService :
// *This function will be called by the cdevSystem object to create an
// *initial instance of the VirtualService.
// ***
extern “C” cdevService * newVirtualService (char * name, cdevSystem * system);

// ***
// * class VirtualService :
// *This class simply inherits from the cdevClientService and must define
// *only a constructor and destructor.
// ***
class VirtualService : public cdevClientService
{
public:

VirtualService (char * name, cdevSystem & system =
cdevSystem::defaultSystem());

protected:
int RESULT_CODE_TAG;

virtual ~VirtualService (void) {};
virtual void fireCallback (int status, cdevTranObj &xobj, cdevData *resultData);

};

The
cre
Vir

The
alm
cde

V
irtualS

ervice.cc

54
D

ocum
ent R

evision: 1

r file. The methods that are contained
what is provided by default by the

newVirtualService is called by the
vSystem to create an instance of
 VirtualService object.

constructor for the class will
ialize the underlying
vClientService object with the
e of the Name Server domain and
service name and cdevSystem

ameters.

ditionally the constructor must
lare any tags that it will be using for
munications.
VirtualService.cc This source file implements the classes that are defined in the VirtualService.h heade
in this file define the functionality for the VirtualService that is different from
cdevClientService class.

#include <VirtualService.h>

// ***
// * newVirtualService:
// *This function will be called by the cdevSystem object to create an
// *initial instance of the VirtualService.
// ***
extern “C” cdevService * newVirtualService (char * name, cdevSystem * system)

{
return new VirtualService(name, *system);
}

// ***
// * VirtualService::VirtualService :
// *This is teh constructor for the VirtualService. It initializes the
// *underlying cdevClientService by specifying that it is in the domain of
// *VIRTUAL.
// ***
VirtualService::VirtualService (char * name, cdevSystem & system)

: cdevClientService(“VIRTUAL”, name, system)
{
// ***
// * Install the RESULT_CODE_TAG at a location of 30 or higher if it
// * does not already exist.
// ***
RESULT_CODE_TAG = 0;
cdevData::tagC2I(“resultCode”, &RESULT_CODE_TAG);

for(int i=30; RESULT_CODE_TAG==0 && i<65534; i++)
{
cdevData::insertTag(i, “resultCode”);
cdevData::tagC2I(“resultCode”, &RESULT_CODE_TAG);
}

The
cde
the

The
init
cde
nam
the
par

Ad
dec
com

V
irtualS

ervice.cc

55

ce initialized the VirtualService will
lare its presence using the
ortError mechanism.

fore calling the user defined
lback, this method will copy the
ultCode property of the returned
vData object into the status integer
t is provided to the callback
ction.
system.reportError(CDEV_SEVERITY_INFO, “VirtualService”, NULL,
 “Constructing a new VirtualService”);

}

// ***
// * VirtualService::fireCallback :
// *This is the method that will be called to dispatch the callback methods
// *that are associated with the calls to the Virtual Server. If the
// *message has been processed successfully, then the method will remove
// *the resultCode from the outbound data and use that as the status.
// ***
void VirtualService::fireCallback (int status, cdevTranObj &xobj, cdevData *resultData)

{
// ***
// * If the message was transmitted successfully, get the result code
// * from the data that was returned and use that as the status.
// ***
if(status==CDEV_SUCCESS && resultData!=NULL)

{
resultData->get(RESULT_CODE_TAG, &status);
resultData->remove(RESULT_CODE_TAG);
}

cdevClientService::fireCallback(status, xobj, resultData);
}

On
dec
rep

Be
cal
res
cde
tha
fun

V
irtual.ddl

56
D

ocum
ent R

evision: 1

irtualService for transmission to the
Virtual.ddl This is the device definition file that is used to map the CDEV requests to the V
VirtualServer.

service Virtual
{
tags {server}
}

class Virtuals
{
verbs {get, set, monitorOn, monitorOff}

attributes
{
default Virtual;
servers Virtual;
attrib0 Virtual {server=TestServerX};
attrib1 Virtual {server=TestServerX};
attrib2 Virtual {server=TestServerX};
attrib3 Virtual {server=TestServerX};
attrib4 Virtual {server=TestServerX};
attrib5 Virtual {server=TestServerX};
attrib6 Virtual {server=TestServerX};
attrib7 Virtual {server=TestServerX};
attrib8 Virtual {server=TestServerX};
attrib9 Virtual {server=TestServerX};
}

messages
{
disconnect Virtual;
}

}

Virtuals :
device0, device1, device2, device3, device4,
device5, device6, device7, device8, device9;

	The CDEV Generic Server
	Table of Contents
	1. Overview of the CDEV Generic Server Engine 1
	2. Building the CDEV Generic Server Engine 3
	3. The Reflector Server - A Simple Client/Server System 5
	4. Server Class Hierarchy 9
	5. Client Class Hierarchy 12
	6. Properties of the cdevSessionManager Class 15
	7. Properties of the cdevServer Class 20
	8. Properties of the cdevServerInterface Class 22
	9. Properties of the cdevClientService Class 25
	10. Properties of the cdevClientRequestObject Class 28
	11. Implementing Monitoring on the cdevServer 31
	12. VirtualService: A Complex Client/Server Implementation 34

	List of Figures
	Figure 1. ReflectorServer.cc - Source Code for the Reflector Server 5
	Figure 2. ReflectorService.h - Header File for the Reflector Service 6
	Figure 3. ReflectorService.cc - Source Code for the Reflector Service 7
	Figure 4. Reflector.ddl - A Simple CDEV DDL File 8
	Figure 5. Object Hierarchy of Server Classes 9
	Figure 6. Object Hierarchy of Client Classes 12
	Figure 7. General Structure of the cdevMonitorTable 31
	Figure 8. Components of the Virtual Server 34
	Figure 9. Components of the Virtual Service 34

	1. Overview of the CDEV Generic Server Engine
	Purpose of This Document
	Intended Audience
	What is the CDEV Generic Server Engine
	Why Use the CDEV Generic Server Engine
	Features

	2. Building the CDEV Generic Server Engine
	Steps for Compiling and Testing the CDEV Generic Server Engine
	1. Install and compile the CDEV source code distribution. See the CDEV distribution for specific ...
	2. Compile the Adaptive Communications Environment (ACE) Library. ACE is located at the same leve...
	3. Setup the Makefile for your platform. In the directory include/makeinclude there are a collect...
	4. Compile the cdevGenericServer Library. The source code tree for this distribution is located i...
	CDEV
	CDEVVERSION
	CDEVSHOBJ
	CDEVLIB
	CDEVINCLUDE
	5. Run the test applications to ensure that the code is working correctly. These applications are...
	5a. Start the Name Server. The NameServer application is located in the bin directory of the cdev...
	5b. Specify the host name of the Name Server. Because all applications will need to access the Na...
	5c. Specify the CDEV Device Definition Language file for the test programs. The DDL file for the ...
	5d. Specify the CDEVSHOBJ directory. The CDEVSHOBJ directory is the directory that contains the v...
	5e. Start the Test Server. The environment is now correct to start the TestServer. From the bin s...
	5f. Specify the Client Tag Map. In order to test all capabilities of the server, the client shoul...
	5g. Start the Test Client. In a new window, set the CDEV_NAME_SERVER and the CDEVDDL environment ...
	5h. Examine Test Server and Test Client output. The server and the client should periodically pri...
	5i. Terminate the Test Server and the Test Client. The TestServer and TestProgram applications ar...

	3. The Reflector Server - A Simple Client/Server System
	Overview
	Reflector Server Source Code
	Figure 1: ReflectorServer.cc - Source Code for the Reflector Server

	ReflectorServer Header Files
	The ReflectorServer Class
	The main Function
	The ReflectorService Source Code
	Figure 2: ReflectorService.h - Header File for the Reflector Service
	Figure 3: ReflectorService.cc - Source Code for the Reflector Service

	The ReflectorService.h Header File
	The newReflectorService Function
	The ReflectorService Class
	The CDEV DDL File
	Figure 4: Reflector.ddl - A Simple CDEV DDL File

	Testing the Reflector Server
	1. Start the Name Server.
	2. Set the CDEV_NAME_SERVER environment variable in the shell where you will execute the server a...
	3. Set the CDEVSHOBJ environment variable in the shell where you will start the client applicatio...
	4. Set the CDEVDDL environment variable in the shell where you will start the client application ...
	5. Start the server.
	6. Start the cdevUtil application that is provided with the CDEV distribution and send messages t...

	4. Server Class Hierarchy
	Server Classes
	Figure 1: Object Hierarchy of Server Classes

	FifoQueue Class
	MultiQueue Class
	ClientSession Class
	Attributes of the ClientSession Class
	localID
	short localID;

	clientID
	int clientID;

	socketID
	int socketID;

	SocketSession Class
	Attributes of the SocketSession Class
	socketID
	int socketID;

	ClientAcceptor Class
	SocketReader Class
	SocketWriter Class
	ClientHandler Class
	cdevSessionManager Class
	cdevServer Class

	5. Client Class Hierarchy
	Client Classes
	Figure 2: Object Hierarchy of Client Classes

	SocketReader Class
	SocketWriter Class
	ServerHandler Class
	ServerHandlerCallback Class
	ServerConnectionList Class
	cdevServerInterface Class
	cdevClientRequestObject Class
	cdevClientService Class

	6. Properties of the cdevSessionManager Class
	Overview
	Attributes of the cdevSessionManager Class
	Reactor
	static ACE_Reactor Reactor;

	trigger
	FD_Trigger trigger;

	rate
	ACE_Time_Value rate;

	localIdx
	static IntHash localIdx;

	inbound
	FifoQueue inbound;

	clients
	IntHash clients;

	sockets
	IntHash sockets;

	Methods of the cdevSessionManager Class
	getNextLocalID
	static short getNextLocalID (void);

	newClientSession
	ClientSession * newClientSession (int SocketID,
	int ClientID,
	int LocalD);

	newClientSession
	SocketSession * newSocketSession (int SocketID);

	findLocalClient
	virtual ClientSession * findLocalClient (short localID);

	findClient
	virtual ClientSession * findClient (int clientID);

	findSocket
	virtual SocketSession * findSocket (int socketID);

	addClient
	virtual ClientSession * addClient (int socketID, int clientID);

	addSocket
	virtual SocketSession * addSocket (int socketID);

	removeClient
	virtual void removeClient (int clientID, int unregisterFlag=1);

	removeSocket
	virtual void removeSocket (int socketID);

	enqueue
	virtual int enqueue (int socketID, char * binary, unsigned len);

	enqueue
	virtual int enqueue (cdevPacket * packet);

	dequeue
	virtual int dequeue (cdevPacket * &packet);

	decodePacket
	virtual cdevPacket * dequeue (cdevPacketBinary * binary);

	encodePacket
	virtual cdevPacketBinary * enqueue (cdevPacket * packet);

	get_handle
	virtual int get_handle (void) const;

	handle_input
	virtual int handle_input (ACE_HANDLE);

	handle_close
	virtual int handle_close (int, ACE_Reactor_Mask);

	handle_timeout
	virtual int handle_timeout (const ACE_Time_Value&,
	const void *);

	set_rate
	virtual void set_rate (double d);

	get_rate
	virtual ACE_Time_Value& get_rate (void);

	processMessages
	virtual void processMessages (void);

	7. Properties of the cdevServer Class
	Overview
	Attributes of the cdevServer Class
	Finished
	static sig_atomic_t Finished;

	serverName
	char * serverName;

	acceptor
	class ClientAcceptor * acceptor;

	timer
	cdevNameServerTimer * timer;

	status
	int status;

	Methods of the cdevServer Class
	cdevServer
	cdevServer (char * Domain, char * Server,
	unsigned short Port, double Rate);

	newClientSession
	ClientSession * newClientSession (int SocketID,
	int ClientID,
	int LocalD);

	newSocketSession
	SocketSession * newSocketSession (int SocketID);

	dequeue
	int dequeue (cdevMessage * &message);

	decodePacket
	cdevPacket * decodePacket (cdevPacketBinary * input);
	cdevPacket * decodePacket(cdevMessage * message);

	encodePacket
	cdevPacketBinary * encodePacket (cdevPacket * input);
	cdevPacketBinary * encodePacket(cdevMessage * message);

	operational
	virtual int operational (void);

	8. Properties of the cdevServerInterface Class
	Overview
	Attributes of the cdevServer Interface Class
	Reactor
	static ACE_Reactor Reactor;

	connections
	ServerConnectionList connections;

	domain
	char * domain;

	defaultServer
	char * defaultServer;

	defaultServerHandler
	ServerHandler * defaultServerHandler;

	maxFd
	int maxFd;

	fdList
	int * fdList;

	Methods of the cdevServer Interface Class
	cdevServerInterface
	cdevServerInterface (char * Domain);

	getDefault
	virtual char * getDefault (void);

	getDomain
	virtual char * getDomain (void);

	setDefault
	virtual void setDefault (char * Default);

	connect
	virtual ServerHandler * connect (char * server);

	disconnect
	virtual ServerHandler * disconnect (char * server);

	enqueue
	int enqueue (ServerHandler *handler, char *binary, size_t len);

	getFd
	virtual int getFd (int * &fd, int &numFd);

	flush
	virtual int flush (void);
	int flush (int fd);

	pend
	virtual int pend (double seconds, int fd = -1);

	9. Properties of the cdevClientService Class
	Overview
	Attributes of the cdevClientService Class
	callback
	cdevCallback callback;

	transactions
	AddressIndex transactions;

	contexts
	cdevContextMap contexts;

	tagCallback
	cdevClientTagCallback tagCallback;

	Methods of the cdevClientService Class
	cdevClientService
	cdevClientService (char * domain, char * name,
	cdevSystem & system =
	cdevSystem::defaultSystem());

	defaultCallback
	static void defaultCallback (int, void *,
	cdevRequestObject &,
	cdevData &);

	outputError
	virtual int outputError (int severity, char *name,
	char *formatString,...);

	flush
	int flush (void);

	pend
	int pend (double seconds, int fd = -1);

	poll
	int poll (void);

	pend
	int pend (int fd = -1);

	getNameServer
	int getNameServer (cdevDevice * &ns);

	getRequestObject
	int getRequestObject (char * device, char * message,
	cdevRequestObject * &req);

	enqueue
	int enqueue (char * server, cdevData * in,
	cdevTranObj & xobj);
	int enqueue (ServerHandler * handler,
	cdevData * in, cdevTranObj & xobj);

	cancel
	int cancel (cdevTranObj & xobj);

	enqueue
	int enqueue (int status, ServerHandler * handler,
	char * binary, size_t binaryLen);

	fireCallback
	void fireCallback (int status, cdevTranObj &xobj,
	cdevData *resultData,
	int partialTransaction = 0);

	10. Properties of the cdevClientRequestObject Class
	Overview
	Attributes of the cdevClient RequestObject Class
	sendStatus
	SendStatus sendStatus;

	server
	char server [256];

	DDL_server
	char DDL_server[256];

	syncCallback
	cdevCallback syncCallback;

	handler
	ServerHandler * handler;

	contextID
	int contextID;

	commandCode
	int commandCode;

	messageCode
	int messageCode;

	Methods of the cdevClient RequestObject Class
	constructor
	cdevClientRequestObject (char * device, char * message,
	cdevSystem & system =
	cdevSystem::defaultSystem());

	setContext
	virtual int setContext (cdevData & ctx);

	send
	virtual int send (cdevData & in, cdevData & out);
	virtual int send (cdevData * in, cdevData & out);
	virtual int send (cdevData & in, cdevData * out);
	virtual int send (cdevData * in, cdevData * out);

	sendNoBlock
	virtual int sendNoBlock (cdevData & in, cdevData & out);
	virtual int sendNoBlock (cdevData * in, cdevData & out);
	virtual int sendNoBlock (cdevData & in, cdevData * out);
	virtual int sendNoBlock (cdevData * in, cdevData * out);

	sendCallback
	virtual int sendCallback (cdevData & in, cdevCallback &);
	virtual int sendCallback (cdevData * in, cdevCallback &);

	className
	virtual const char * className (void) const;

	defaultCallback
	static void defaultCallback (int status, void * user,
	cdevRequestObject &,
	cdevData &);

	executeServer HandlerCallback
	virtual void executeServerHandlerCallback (ServerHandler*);

	getServerHandler
	virtual int getServerHandler (ServerHandler ** Handler);

	getContextID
	int getContextID (void);

	getCommandCode
	int getCommandCode (void);

	getMessageCode
	int getMessageCode (void);

	11. Implementing Monitoring on the cdevServer
	Overview
	Figure 3: General Structure of the cdevMonitorTable

	Special Notes
	Attributes of the cdevMonitorTable Class
	monitors
	StringHash monitors;

	Methods of the cdevMonitorTable Class
	insertMonitor
	int insertMonitor (cdevMessage * request,
	cdevData * data);
	int insertMonitor (cdevMessage * request,
	cdevData ** data, size_t dataCnt);

	removeMonitor
	int removeMonitor (cdevMessage * request);

	remove ClientMonitors
	int removeClientMonitors(short clientID);

	findMonitor
	cdevMonitorNode * findMonitor (char * device,
	char * attrib);

	fireMonitor
	int fireMonitor (char * device, char * attrib,
	char * property, cdevData * data);
	int fireMonitor (char * device, char * attrib,
	int property, cdevData * data);

	fireCallback
	int fireCallback (cdevMessage * message);

	Attributes of the cdevMonitorNode Class
	parent
	class cdevMonitorTable * parent;

	node
	cdevMonitorEntry * nodes;

	hashString
	char * hashString;

	Methods of the cdevMonitorNode Class
	fireMonitor
	int fireMonitor (char * property, cdevData * data);
	int fireMonitor (int property, cdevData * data);

	isMonitored
	int isMonitored (void);

	12. VirtualService: A Complex Client/Server Implementation
	Overview
	Virtual Server Structure
	Figure 4: Components of the Virtual Server

	Virtual Service Structure
	Figure 5: Components of the Virtual Service

	VirtualAttrib.h
	VirtualAttrib.cc
	VirtualServer.h
	VirtualServer.cc
	VirtualService.h
	VirtualService.cc
	Virtual.ddl

